Patents by Inventor Jai-kwang Shin

Jai-kwang Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140091311
    Abstract: A nitride semiconductor based power converting device includes a nitride semiconductor based power transistor, and at least one nitride semiconductor based passive device. The passive device and the power transistor respectively include a channel layer including a first nitride semiconductor material, and a channel supply layer on the channel layer including a second nitride semiconductor material to induce a 2-dimensional electron gas (2DEG) at the channel layer. The passive device may be a resistor, an inductor, or a capacitor.
    Type: Application
    Filed: June 19, 2013
    Publication date: April 3, 2014
    Inventors: Woo-chul JEON, Baik-woo LEE, Jai-kwang SHIN, Jae-joon OH
  • Publication number: 20140091310
    Abstract: A semiconductor device includes a first compound semiconductor layer on a substrate, first through third electrodes spaced apart from each other on the first compound semiconductor layer, a second compound semiconductor layer on the first compound semiconductor layer between the first through third electrodes, a third compound semiconductor layer on the second compound semiconductor layer between the first and second electrodes, a first gate electrode on the third compound semiconductor layer, a fourth compound semiconductor layer having a smaller thickness than the third compound semiconductor layer on a portion of the second compound semiconductor layer between the second and third electrodes, and a second gate electrode on the fourth compound semiconductor layer. The first compound semiconductor layer between the second and third electrodes includes a 2-dimensional electron gas (2DEG) and the third compound semiconductor layer includes a 2-dimensional hole gas (2DHG).
    Type: Application
    Filed: April 10, 2013
    Publication date: April 3, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Woo-chul Jeon, Jai-kwang Shin, Jae-joon Oh
  • Publication number: 20140091312
    Abstract: A power switching device includes a channel forming layer on a substrate which includes a 2-dimensional electron gas (2DEG), and a channel supply layer which corresponds to the 2DEG at the channel forming layer. A cathode is coupled to a first end of the channel supply layer and an anode is coupled to a second end of the channel supply layer. The channel forming layer further includes a plurality of depletion areas arranged in a pattern, and portions of the channel forming layer between the plurality of depletion areas are non-depletion areas.
    Type: Application
    Filed: June 26, 2013
    Publication date: April 3, 2014
    Inventors: Woo-chul JEON, Young-hwan PARK, Ki-yeol PARK, Jai-kwang SHIN, Jae-joon OH
  • Publication number: 20140091363
    Abstract: According to example embodiments, a normally-off high electron mobility transistor (HEMT) includes: a channel layer having a first nitride semiconductor, a channel supply layer on the channel layer, a source electrode and a drain electrode at sides of the channel supply layer, a depletion-forming layer on the channel supply layer, a gate insulating layer on the depletion-forming layer, and a gate electrode on the gate insulation layer. The channel supply layer includes a second nitride semiconductor and is configured to induce a two-dimensional electron gas (2DEG) in the channel layer. The depletion-forming layer is configured has at least two thicknesses and is configured to form a depletion region in at least a partial region of the 2DEG. The gate electrode contacts the depletion-forming layer.
    Type: Application
    Filed: May 1, 2013
    Publication date: April 3, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Woo-chul JEON, Young-hwan PARK, Jae-joon OH, Kyoung-yeon KIM, Joon-yong KIM, Ki-yeol PARK, Jai-kwang SHIN, Sun-kyu HWANG
  • Publication number: 20140077388
    Abstract: A semiconductor device includes a device chip coupled to an electrode chip. The device chip includes a first device electrode on a first substrate, and the electrode chip includes a first pad electrode extending at least partially through a second substrate. The first pad electrode is electrically connected to the first device electrode and includes spaced conductive sections which serve as a heat dissipating structure to transfer heat received from the device chip and the electrode chip. A method for making a semiconductor device includes using the substrate of the electrode chip as a support during thinning the substrate of the device chip.
    Type: Application
    Filed: January 25, 2013
    Publication date: March 20, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hong-Pyo HEO, Young-soo KWON, Jai-kwang SHIN, Young-tek OH, Hyung-su JEONG
  • Publication number: 20140061725
    Abstract: According to example embodiments, a higher electron mobility transistor (HEMT) may include a first channel layer, a second channel layer on the first channel layer, a channel supply on the second channel layer, a drain electrode spaced apart from the first channel layer, a source electrode contacting the first channel layer and contacting at least one of the second channel layer and the channel supply layer, and a gate electrode unit between the source electrode and the drain electrode. The gate electrode unit may have a normally-off structure. The first and second channel layer form a PN junction with each other. The drain electrode contacts at least one of the second channel layer and the channel supply layer.
    Type: Application
    Filed: January 30, 2013
    Publication date: March 6, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ki-yeol PARK, Woo-chul JEON, Young-hwan PARK, Jai-kwang SHIN, Jong-bong HA, Sun-kyu HWANG
  • Publication number: 20140048850
    Abstract: According to example embodiments, a semiconductor device may include a high electron mobility transistor (HEMT) on a first region of a substrate, and a diode on a second region of the substrate. The HEMT may be electrically connected to the diode. The HEMT and the diode may be formed on an upper surface of the substrate such as to be spaced apart from each other in a horizontal direction. The HEMT may include a semiconductor layer. The diode may be formed on another portion of the substrate on which the semiconductor layer is not formed. The HEMT and the diode may be cascode-connected to each other.
    Type: Application
    Filed: March 8, 2013
    Publication date: February 20, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Woo-chul JEON, Young-hwan PARK, Ki-yeol PARK, Jai-kwang SHIN, Jae-joo OH, Jong-bong HA
  • Publication number: 20140049296
    Abstract: An electronic device may include a first transistor having a normally-on characteristic; a second transistor connected to the first transistor and having a normally-off characteristic; a constant voltage application unit configured to apply a constant voltage to a gate of the first transistor; and a switching unit configured to apply a switching signal to the second transistor. The first transistor may be a high electron mobility transistor (HEMT). The second transistor may be a field-effect transistor (FET). The constant voltage application unit may include a diode connected to the gate of the first transistor; and a constant current source connected to the diode.
    Type: Application
    Filed: March 8, 2013
    Publication date: February 20, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Woo-chul JEON, Ki-yeol PARK, Young-hwan PARK, Jai-kwang SHIN, Jae-joon OH
  • Publication number: 20140042449
    Abstract: According to example embodiments, a high electron mobility transistor (HEMT) includes a channel supply layer that induces a two-dimensional electron gas (2DEG) in a channel layer, a source electrode and a drain electrode that are at sides of the channel supply layer, a depletion-forming layer that is on the channel supply layer and contacts the source electrode, a gate insulating layer on the depletion-forming layer, and a gate electrode on the gate insulating layer. The depletion-forming layer forms a depletion region in the 2DEG.
    Type: Application
    Filed: January 2, 2013
    Publication date: February 13, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Woo-chul JEON, Jong-seob KIM, Ki-yeol PARK, Young-hwan PARK, Jai-kwang SHIN, Jae-joon OH, Jong-bong HA, Sun-kyu HWANG
  • Patent number: 8638163
    Abstract: A semiconductor device and a method of operating the semiconductor device. The semiconductor device includes a voltage generator configured to generate a test voltage, a graphene transistor configured to receive a gate-source voltage based on the test voltage, and a detector configured to detect whether the gate-source voltage is a Dirac voltage of the graphene transistor, and output a feedback signal applied to the voltage generator indicating whether the gate-source voltage is the Dirac voltage.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: January 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho-jung Kim, U-in Chung, Jai-kwang Shin
  • Publication number: 20140021514
    Abstract: A nitride-based semiconductor diode includes a substrate, a first semiconductor layer disposed on the substrate, and a second semiconductor layer disposed on the first semiconductor layer. The first and second semiconductor layers include a nitride-based semiconductor. A first portion of the second semiconductor layer may have a thickness thinner than a second portion of the second semiconductor layer. The diode may further include an insulating layer disposed on the second semiconductor layer, a first electrode covering the first portion of the second semiconductor layer and forming an ohmic contact with the first semiconductor layer and the second semiconductor layer, and a second electrode separated from the first electrode, the second electrode forming an ohmic contact with the first semiconductor layer and the second semiconductor layer.
    Type: Application
    Filed: June 25, 2013
    Publication date: January 23, 2014
    Inventors: Woo-chul JEON, Ki-yeol PARK, Young-hwan PARK, Jai-kwang SHIN, Jae-joon OH
  • Publication number: 20140021510
    Abstract: A higher electron mobility transistor (HEMT) and a method of manufacturing the same are disclosed. According to example embodiments, the HEMT may include a channel supply layer on a channel layer, a source electrode and a drain electrode that are on at least one of the channel layer and the channel supply layer, a gate electrode between the source electrode and the drain electrode, and a source pad and a drain pad. The source pad and a drain pad electrically contact the source electrode and the drain electrode, respectively. At least a portion of at least one of the source pad and the drain pad extends into a corresponding one of the source electrode and drain electrode that the at least one of the source pad and the drain pad is in electrical contact therewith.
    Type: Application
    Filed: January 29, 2013
    Publication date: January 23, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Woo-chul JEON, Ki-yeol PARK, Young-hwan PARK, Jai-kwang SHIN, Jae-joon OH, Hyuk-soon CHOI, Jong-bong HA
  • Publication number: 20140021511
    Abstract: A high electron mobility transistor (HEMT) according to example embodiments includes a channel layer, a channel supply layer on the channel layer, a source electrode and a drain electrode on at least one of the channel layer and the channel supply layer, a gate electrode between the source electrode and the drain electrode, and a Schottky electrode forming a Schottky contact with the channel supply layer. An upper surface of the channel supply layer may define a Schottky electrode accommodation unit. At least part of the Schottky electrode may be in the Schottky electrode accommodation unit. The Schottky electrode is electrically connected to the source electrode.
    Type: Application
    Filed: March 14, 2013
    Publication date: January 23, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Woo-chul JEON, Kyoung-yeon KIM, Jong-seob KIM, Joon-yong KIM, Ki-yeol PARK, Young-hwan PARK, Jai-kwang SHIN, Jae-joon OH, Hyuk-soon CHOI, Jong-bong HA, Sun-kyu HWANG, In-jun HWANG
  • Publication number: 20130307026
    Abstract: According to example embodiments, High electron mobility transistors (HEMTs) may include a discontinuation region in a channel region. The discontinuation region may include a plurality of 2DEG unit regions that are spaced apart from one another. The discontinuation region may be formed at an interface between two semiconductor layers or adjacent to the interface. The discontinuation region may be formed by an uneven structure or a plurality of recess regions or a plurality of ion implantation regions. The plurality of 2DEG unit regions may have a nanoscale structure. The plurality of 2DEG unit regions may be formed in a dot pattern, a stripe pattern, or a staggered pattern.
    Type: Application
    Filed: January 29, 2013
    Publication date: November 21, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sun-kyu HWANG, Jai-kwang SHIN, Hyuk-soon CHOI, Jong-seob KIM, Jae-joon OH, Jong-bong HA, In-jun HWANG, Kyoung-yeon KIM
  • Publication number: 20130277722
    Abstract: Provided are spin field effect logic devices, the logic devices including: a gate electrode; a channel formed of a magnetic material above the gate electrode to selectively transmit spin-polarized electrons; a source on the channel; and a drain and an output electrode on the channel outputting electrons transmitted from the source. The gate electrode may control a magnetization state of the channel in order to selectively transmit the electrons injected from the source to the channel.
    Type: Application
    Filed: June 11, 2013
    Publication date: October 24, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ki-ha HONG, Jong-seob KIM, Jai-kwang SHIN
  • Patent number: 8558256
    Abstract: Provided are a light emitting diode (LED) using a Si nanowire as an emission device and a method of fabricating the same. The LED includes: a semiconductor substrate; first and second semiconductor protrusions disposed on the semiconductor substrate to face each other; a semiconductor nanowire suspended between the first and second semiconductor protrusions; and first and second electrodes disposed on the first and second protrusions, respectively.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-ha Hong, Young-gu Jin, Jai-kwang Shin, Sung-Il Park, Jong-seob Kim
  • Publication number: 20130265028
    Abstract: A high side gate driver, a switching chip, and a power device, which respectively include a protection device, are provided. The high side gate driver includes a first terminal configured to receive a first low level driving power supply that is provided to turn off the high side normally-on switch; a first switching device connected to the first terminal; and a protection device connected in series between the first switching device and a gate of the high side normally-on switch, the protection device configured to absorb a majority of a voltage applied to a gate of the high side normally-on switch. The power device includes the high side gate driver. In addition, the switching chip includes a high side normally-on switch, an additional normally-on switch, and a low side normally-on switch, which have a same structure.
    Type: Application
    Filed: November 29, 2012
    Publication date: October 10, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun-sik CHOI, Ho-jung KIM, Jai-kwang SHIN, U-in CHUNG
  • Publication number: 20130241604
    Abstract: A power module including a power device and a periphery circuit configured to suppress a leakage current in the power device. The periphery circuit includes a leakage current detection circuit configured to detect a leakage current from the power device and control operation of the power device based on a result of the detection. The leakage current detection circuit including an input terminal connected to the power device, a plurality of NMOS transistors, a plurality of PMOS transistors connected to the plurality of NMOS transistors, and a comparator.
    Type: Application
    Filed: January 9, 2013
    Publication date: September 19, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Ho-jung KIM, Jai-kwang SHIN, U-in CHUNG, Hyun-sik CHOI
  • Publication number: 20130241520
    Abstract: A power management chip and a power management device including the power management chip. The power management chip includes at least one power switch and a driver unit for generating a driving signal for driving the at least one power switch, the driver unit including one or more circuit units formed on a same substrate as the at least one power switch.
    Type: Application
    Filed: August 17, 2012
    Publication date: September 19, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ho-jung KIM, Jai-kwang SHIN, U-in CHUNG, Hyun-sik CHOI
  • Publication number: 20130234207
    Abstract: According to example embodiments, a high electron mobility transistor (HEMT) includes: stack including a buffer layer, a channel layer containing a two dimensional electron gas (2DEG) channel, and a channel supply layer sequentially stacked on each other, the stack defining a first hole and a second hole that are spaced apart from each other. A first electrode, a second electrode, and third electrode are spaced apart from each other along a first surface of the channel supply layer. A first pad is on the buffer layer and extends through the first hole of the stack to the first electrode. A second pad is on the buffer layer and extends through the second hole of the stack to the second electrode. A third pad is under the stack and electrically connected to the third electrode.
    Type: Application
    Filed: December 14, 2012
    Publication date: September 12, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyuk-soon CHOI, Jong-seob KIM, Jai-kwang SHIN, Jae-joon OH, Jong-bong HA, In-jun HWANG