Patents by Inventor Jam-Wem Lee

Jam-Wem Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8476736
    Abstract: A diode includes an anode of a first conductivity type; a first cathode of the first conductivity type; and a second cathode of a second conductivity type opposite the first conductivity type. A lightly-doped region of the first conductivity type is under and vertically overlaps the anode and the first and the second cathodes. The portion of the lightly-doped region directly under the second cathode is fully depleted at a state when no bias voltage is applied between the anode and the second cathode.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: July 2, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jam-Wem Lee, Yi-Feng Chang
  • Publication number: 20130093038
    Abstract: An embodiment is a semiconductor structure. The semiconductor structure comprises a p-type region in a substrate; a first n-type well in the p-type region; a first p-type well in the p-type region; and a second p-type well in the first p-type well. A concentration of a p-type impurity in the first p-type well is less than a concentration of a p-type impurity in the second p-type well. Additional embodiments further comprise further n-type and p-type wells in the substrate. A method for forming a semiconductor structure is also disclosed.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 18, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jam-Wem Lee, Yi-Feng Chang
  • Publication number: 20130093010
    Abstract: To limit or prevent current crowding, various HV-MOSFET embodiments include a current diversion region disposed near a drain region of an HV-MOSFET and near an upper surface of the semiconductor substrate. In some embodiments, the current diversion region is disposed near a field plate of the HV-MOSFET, wherein the field plate can also help to reduce or “smooth” electric fields near the drain to help limit current crowding. In some embodiments, the current diversion region is a p-doped, n-doped, or intrinsic region that is at a floating voltage potential. This current diversion region can push current deeper into the substrate of the HV-MOSFET (relative to conventional HV-MOSFETs), thereby reducing current crowding during ESD events. By reducing current crowding, the current diversion region makes the HV-MOSFETs disclosed herein more impervious to ESD events and, therefore, more reliable in real-world applications.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 18, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Pei Huang, Yi-Feng Chang, Jam-Wem Lee
  • Publication number: 20130075863
    Abstract: An ESD protection apparatus comprises a substrate, a low voltage p-type well and a low voltage n-type well formed on the substrate. The ESD protection device further comprises a first P+ region formed on the low voltage p-type well and a second P+ region formed on the low voltage n-type well. The first P+ region and the second P+ region are separated by a first isolation region. The breakdown voltage of the ESD protection apparatus is tunable by adjusting the length of the first isolation region.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 28, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jam-Wem Lee, Yi-Feng Chang
  • Publication number: 20130075854
    Abstract: An ESD protection apparatus comprises a metal contact formed on the emitter of a transistor. The metal contact has a different conductivity type from the emitter. In addition, the metal contact and the emitter of the transistor form a diode connected in series with the transistor. The diode connected in series with the transistor provides extra headroom for the breakdown voltage of the ESD protection apparatus.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Feng Chang, Jam-Wem Lee
  • Patent number: 8405943
    Abstract: Circuit and method for RC power clamp triggered dual SCR ESD protection. In an integrated circuit, a protected pad is coupled to an upper SCR circuit and a lower SCR circuit; and both are coupled to the RC power clamp circuit, which is coupled between the positive voltage supply and the ground voltage supply. A structure for ESD protection is disclosed having a first well of a first conductivity type adjacent to a second well of a second conductivity type, the boundary forming a p-n junction, and a pad contact diffusion region in each well electrically coupled to a pad terminal; additional diffusions are provided proximate to and electrically isolated from the pad contact diffusion regions, the diffusion regions and first and second wells form two SCR devices. These SCR devices are triggered, during an ESD event, by current injected into the respective wells by an RC power clamp circuit.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: March 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hsiang Song, Jam-Wem Lee
  • Patent number: 8400813
    Abstract: A method of operating a FinFET fuse includes providing the FinFET fuse including a drain, a gate, a source, and a channel between the drain and the source; and applying a program voltage to one of the source and the drain of the FinFET fuse to cause a punch-through in the channel of the FinFET fuse. The method further includes determining a program state of the FinFET fuse.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: March 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jam-Wem Lee
  • Publication number: 20130009204
    Abstract: An ESD protection circuit includes a pad of an IC, circuitry coupled to the pad for buffering data, an RC power clamp on the IC, and first and second silicon controlled rectifier (SCR) circuits. The RC power clamp is coupled between a positive power supply terminal and a ground terminal. The first SCR circuit is coupled between the pad and the positive power supply terminal. The first SCR circuit has a first trigger input coupled to the RC power clamp circuit. The second SCR circuit is coupled between the pad and the ground terminal. The second SCR circuit has a second trigger input coupled to the RC power clamp circuit. At least one of the SCR circuits includes a gated diode configured to selectively provide a short or relatively conductive electrical path between the pad and one of the positive power supply terminal and the ground terminal.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Hsiang SONG, Jam-Wem LEE, Tzu-Heng CHANG, Yu-Ying HSU
  • Patent number: 8331068
    Abstract: An embodiment is a semiconductor device comprising a receiver circuit comprising fin field effect transistors (FinFETs), a transceiver circuit comprising FinFETs, and a transmit bus electrically coupling the receiver circuit and the transceiver circuit, wherein the receiver circuit and the transceiver circuit each further comprises an electrostatic discharge protection circuit comprising planar transistors electrically coupled to the transmit bus. Other embodiments may further comprise a power clamp electrically coupling a first power bus and a first ground bus, a power clamp electrically coupling a second power bus and a second ground bus, or at least two diodes electrically cross-coupling the first ground bus and the second ground bus. Also, the planar transistors of the transceiver circuit and the receiver circuit may each comprise a planar PMOS transistor and a planar NMOS transistor.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: December 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jam-Wem Lee, Andy Lo
  • Publication number: 20120211869
    Abstract: A diode includes an anode of a first conductivity type; a first cathode of the first conductivity type; and a second cathode of a second conductivity type opposite the first conductivity type. A lightly-doped region of the first conductivity type is under and vertically overlaps the anode and the first and the second cathodes. The portion of the lightly-doped region directly under the second cathode is fully depleted at a state when no bias voltage is applied between the anode and the second cathode.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jam-Wem Lee, Yi-Feng Chang
  • Publication number: 20120168906
    Abstract: An electrostatic discharge (ESD) device includes a high-voltage well (HVW) region of a first conductivity type; a first heavily doped region of a second conductivity type opposite the first conductivity type over the HVW region; and a doped region of the first conductivity type contacting the first heavily doped region and the HVW region. The doped region is under the first heavily doped region and over the HVW region. The doped region has a first impurity concentration higher than a second impurity concentration of the HVW region and lower than a third impurity concentration of the first heavily doped region. The ESD device further includes a second heavily doped region of the second conductivity type over the HVW region; and a third heavily doped region of the first conductivity type over and contacting the HVW region.
    Type: Application
    Filed: April 21, 2011
    Publication date: July 5, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsi-Yu Kuo, Jam-Wem Lee, Yi-Feng Chang
  • Publication number: 20120126329
    Abstract: Provided is a top-channel only finFET device. The devices described herein may provide a native device that is compatible with a finFET process flow. A gate may be formed on the top of a fin providing the channel region of the device. In an embodiment, the gate is provided only on one side of the channel, for example, on the top of the fin. The sidewalls of the fin including channel may abut an isolation structure. In an embodiment, isolation structures are formed between the fins to provide a planar surface for the formation of a gate.
    Type: Application
    Filed: January 31, 2012
    Publication date: May 24, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd. ("TSMC")
    Inventor: Jam-Wem Lee
  • Patent number: 8153493
    Abstract: Provided is a top-channel only finFET device. The methods and devices described herein may provide a native device that is compatible with a finFET process flow. A gate may be formed on the top of a fin providing the channel region of the device. In an embodiment, the gate is provided only on one side of the channel, for example, on the top of the fin. The sidewalls of the fin including channel may abut an isolation structure. In an embodiment, isolation structures are formed between the fins to provide a planar surface for the formation of a gate.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: April 10, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jam-Wem Lee
  • Publication number: 20120037956
    Abstract: Circuit and method for RC power clamp triggered dual SCR ESD protection. In an integrated circuit, a protected pad is coupled to an upper SCR circuit and a lower SCR circuit; and both are coupled to the RC power clamp circuit, which is coupled between the positive voltage supply and the ground voltage supply. A structure for ESD protection is disclosed having a first well of a first conductivity type adjacent to a second well of a second conductivity type, the boundary forming a p-n junction, and a pad contact diffusion region in each well electrically coupled to a pad terminal; additional diffusions are provided proximate to and electrically isolated from the pad contact diffusion regions, the diffusion regions and first and second wells form two SCR devices. These SCR devices are triggered, during an ESD event, by current injected into the respective wells by an RC power clamp circuit.
    Type: Application
    Filed: October 26, 2011
    Publication date: February 16, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hsiang Song, Jam-Wem Lee
  • Patent number: 8049250
    Abstract: Circuit and method for RC power clamp triggered dual SCR ESD protection. In an integrated circuit, a protected pad is coupled to an upper SCR circuit and a lower SCR circuit; and both are coupled to the RC power clamp circuit, which is coupled between the positive voltage supply and the ground voltage supply. A structure for ESD protection is disclosed having a first well of a first conductivity type adjacent to a second well of a second conductivity type, the boundary forming a p-n junction, and a pad contact diffusion region in each well electrically coupled to a pad terminal; additional diffusions are provided proximate to and electrically isolated from the pad contact diffusion regions, the diffusion regions and first and second wells form two SCR devices. These SCR devices are triggered, during an ESD event, by current injected into the respective wells by an RC power clamp circuit.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: November 1, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hsiang Song, Jam-Wem Lee
  • Patent number: 7964893
    Abstract: A method of forming an electrostatic discharging (ESD) device includes forming a first and a second semiconductor fin over a substrate and adjacent to each other; epitaxially growing a semiconductor material on the first and the second semiconductor fins, wherein a first portion of the semiconductor material grown from the first semiconductor fin joins a second portion of the semiconductor material grown from the second semiconductor fin; and implanting a first end and a second end of the semiconductor material and first end portions of the first and the second semiconductor fins to form a first and a second implant region, respectively. A P-N junction is formed between the first end and the second end of the semiconductor material. The P-N junction is a junction of an ESD diode, or a junction in an NPN or a PNP BJT.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: June 21, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jam-Wem Lee
  • Publication number: 20100296213
    Abstract: An embodiment is a semiconductor device comprising a receiver circuit comprising fin field effect transistors (FinFETs), a transceiver circuit comprising FinFETs, and a transmit bus electrically coupling the receiver circuit and the transceiver circuit, wherein the receiver circuit and the transceiver circuit each further comprises an electrostatic discharge protection circuit comprising planar transistors electrically coupled to the transmit bus. Other embodiments may further comprise a power clamp electrically coupling a first power bus and a first ground bus, a power clamp electrically coupling a second power bus and a second ground bus, or at least two diodes electrically cross-coupling the first ground bus and the second ground bus. Also, the planar transistors of the transceiver circuit and the receiver circuit may each comprise a planar PMOS transistor and a planar NMOS transistor.
    Type: Application
    Filed: November 2, 2009
    Publication date: November 25, 2010
    Inventors: Jam-Wem Lee, Andy Lo
  • Publication number: 20100202184
    Abstract: A method of operating a FinFET fuse includes providing the FinFET fuse including a drain, a gate, a source, and a channel between the drain and the source; and applying a program voltage to one of the source and the drain of the FinFET fuse to cause a punch-through in the channel of the FinFET fuse. The method further includes determining a program state of the FinFET fuse.
    Type: Application
    Filed: November 12, 2009
    Publication date: August 12, 2010
    Inventor: Jam-Wem Lee
  • Publication number: 20100155776
    Abstract: A method of forming an electrostatic discharging (ESD) device includes forming a first and a second semiconductor fin over a substrate and adjacent to each other; epitaxially growing a semiconductor material on the first and the second semiconductor fins, wherein a first portion of the semiconductor material grown from the first semiconductor fin joins a second portion of the semiconductor material grown from the second semiconductor fin; and implanting a first end and a second end of the semiconductor material and first end portions of the first and the second semiconductor fins to form a first and a second implant region, respectively. A P-N junction is formed between the first end and the second end of the semiconductor material. The P-N junction is a junction of an ESD diode, or a junction in an NPN or a PNP BJT.
    Type: Application
    Filed: February 26, 2010
    Publication date: June 24, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jam-Wem Lee
  • Publication number: 20100103570
    Abstract: Circuit and method for RC power clamp triggered dual SCR ESD protection. In an integrated circuit, a protected pad is coupled to an upper SCR circuit and a lower SCR circuit; and both are coupled to the RC power clamp circuit, which is coupled between the positive voltage supply and the ground voltage supply. A structure for ESD protection is disclosed having a first well of a first conductivity type adjacent to a second well of a second conductivity type, the boundary forming a p-n junction, and a pad contact diffusion region in each well electrically coupled to a pad terminal; additional diffusions are provided proximate to and electrically isolated from the pad contact diffusion regions, the diffusion regions and first and second wells form two SCR devices. These SCR devices are triggered, during an ESD event, by current injected into the respective wells by an RC power clamp circuit.
    Type: Application
    Filed: October 27, 2008
    Publication date: April 29, 2010
    Inventors: Ming-Hsiang Song, Jam-Wem Lee