Patents by Inventor Jam-Wem Lee

Jam-Wem Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160284849
    Abstract: An embodiment integrated circuit (e.g., diode) and method of making the same. The embodiment integrated circuit includes a well having a first doping type formed over a substrate having the first doping type, the well including a fin, a source formed over the well on a first side of the fin, the source having a second doping type, a drain formed over the well on a second side of the fin, the drain having the first doping type, and a gate oxide formed over the fin, the gate oxide laterally spaced apart from the source by a back off region of the fin. The integrated circuit is compatible with a FinFET fabrication process.
    Type: Application
    Filed: June 13, 2016
    Publication date: September 29, 2016
    Inventors: Tsung-Che Tsai, Yi-Feng Chang, Jam-Wem Lee
  • Publication number: 20160276334
    Abstract: A device comprises a high voltage n well and a high voltage p well over a buried layer, a first low voltage n well over the high voltage n well, wherein a bottom portion of the first low voltage n well is surrounded by the high voltage n well, an N+ region over the first low voltage n well, a second low voltage n well and a low voltage p well over the high voltage p well, a first P+ region over the second low voltage n well and a second P+ region over the low voltage p well.
    Type: Application
    Filed: May 26, 2016
    Publication date: September 22, 2016
    Inventors: Yi-Feng Chang, Jam-Wem Lee
  • Patent number: 9449959
    Abstract: A device includes a first bidirectional PNP circuit coupled to a first output of an communication circuit, and a second bidirectional PNP circuit coupling to a second output of the communication circuit. The first and second bi-direction PNP circuits have coupled outputs and a first breakdown voltage. A third bidirectional PNP circuit is coupled to ground via the coupled outputs of the first bidirectional PNP circuit and of the second bidirectional PNP circuit. The third bidirectional PNP circuit has a second breakdown voltage. In some arrangements, a sum of the first breakdown voltage and the second breakdown voltage exceeds 60 volts. The communication circuit can be an automotive application circuit for a serial automotive communication application. The first and second bidirectional transistor circuits can form a part of a cell of an integrated circuit having an isolation structure to sustain high voltage.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: September 20, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wan-Yen Lin, Jam-Wem Lee
  • Patent number: 9437733
    Abstract: A chip includes a semiconductor substrate, a well region in the semiconductor substrate, and a Dynamic Threshold Metal-Oxide Semiconductor (DTMOS) transistor formed at a front side of the semiconductor substrate. The DTMOS transistor includes a gate electrode, and a source/drain region adjacent to the gate electrode. The source/drain region is disposed in the well region. A well pickup region is in the well region, and the well pickup region is at a back side of the semiconductor substrate. The well pickup region is electrically connected to the gate electrode.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: September 6, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jam-Wem Lee
  • Patent number: 9385707
    Abstract: A high voltage semiconductor device, particularly a device including a number of high breakdown voltage transistors having a common drain, first well, and insulating structure between the gate and the drain as well as method for using the same is provided in this disclosure. The high breakdown voltage transistors in the device together are in an elliptical shape. A second well region, gate structure, and a source region are partially overlapping discontinuous elliptical rings having at least two discontinuities or openings in a top view. The respective discontinuities or openings define each of the high breakdown voltage transistors.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: July 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jam-Wem Lee
  • Patent number: 9368629
    Abstract: An embodiment integrated circuit (e.g., diode) and method of making the same. The embodiment integrated circuit includes a well having a first doping type formed over a substrate having the first doping type, the well including a fin, a source formed over the well on a first side of the fin, the source having a second doping type, a drain formed over the well on a second side of the fin, the drain having the first doping type, and a gate oxide formed over the fin, the gate oxide laterally spaced apart from the source by a back off region of the fin. The integrated circuit is compatible with a FinFET fabrication process.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: June 14, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Tsai, Yi-Feng Chang, Jam-Wem Lee
  • Patent number: 9362266
    Abstract: A robust electrostatic (ESD) protection device is provided. In one example, the ESD protection device is configured to accommodate three nodes. When used with a differential signal device, the first and second nodes may be coupled with the differential signal device's BP and BM signal lines, respectively, and the third node may be coupled to a voltage source. This allows for a single ESD protection device to be used to protect the signal lines of the differential signal device, thus providing significant substrate area savings as compared to the conventional means of using three dual-node ESD protection devices to accomplish substantially the same protection mechanism. Moreover, the ESD protection device may be structurally designed to handle high voltage ESD events, as required by the FlexRay standard.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: June 7, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventor: Jam-Wem Lee
  • Patent number: 9356012
    Abstract: An ESD protection apparatus comprises a metal contact formed on the emitter of a transistor. The metal contact has a different conductivity type from the emitter. In addition, the metal contact and the emitter of the transistor form a diode connected in series with the transistor. The diode connected in series with the transistor provides extra headroom for the breakdown voltage of the ESD protection apparatus.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 31, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Feng Chang, Jam-Wem Lee
  • Publication number: 20160133619
    Abstract: A semiconductor arrangement includes a well region and a first region disposed within the well region. The first region includes a first conductivity type. The semiconductor arrangement includes a first gate disposed above the well region on a first side of the first region. The first gate includes a first top surface facing away from the well region. The first top surface has a first top surface area. The semiconductor arrangement includes a first gate contact disposed above the first gate. The first gate contact includes a first bottom surface facing towards the well region. The first bottom surface has a first bottom surface area. The first bottom surface area covers at least about two thirds of the first top surface area.
    Type: Application
    Filed: December 30, 2015
    Publication date: May 12, 2016
    Inventors: Ming-Hsiang Song, Jam-Wem Lee, Yi-Feng Chang, Wun-Jie Lin
  • Patent number: 9312384
    Abstract: A semiconductor device may include body contacts on a finFET device for ESD protection. The semiconductor device comprises a semiconductor fin, a source/drain region and a body contact. The source/drain region and the body contact are in the semiconductor fin. A portion of the fin is laterally between the source/drain region and the body contact. The semiconductor fin is on a substrate.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: April 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Hsiung Lo, Jam-Wem Lee, Wun-Jie Lin, Jen-Chou Tseng
  • Publication number: 20160099182
    Abstract: A chip includes a semiconductor substrate, a well region in the semiconductor substrate, and a transistor formed at a front side of the semiconductor substrate. A source/drain region of the transistor is disposed in the well region. A well pickup region is disposed in the well region, wherein the well pickup region is at a back side of the semiconductor substrate. A through-via penetrates through the semiconductor substrate, wherein the through-via electrically inter-couples the well pickup region and the source/drain region.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 7, 2016
    Inventor: Jam-Wem Lee
  • Publication number: 20160099241
    Abstract: One or more techniques or systems for forming an n-type metal oxide semiconductor (NMOS) transistor for electrostatic discharge (ESD) are provided herein. In some embodiments, the NMOS transistor includes a first region, a first n-type plus (NP) region, a first p-type plus (PP) region, a second NP region, a second PP region, a shallow trench isolation (STI) region, and a gate stack. In some embodiments, the first PP region is between the first NP region and the second NP region. In some embodiments, the second NP region is between the first PP region and the second PP region, the gate stack is between the first PP region and the second NP region, the STI region is between the second NP region and the second PP region. Accordingly, the first PP region enables ESD current to discharge based on a low trigger voltage for the NMOS transistor.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 7, 2016
    Inventors: Tsung-Che Tsai, Jam-Wem Lee
  • Publication number: 20160093705
    Abstract: A method of forming an integrated circuit device includes forming a gate stack covering a middle portion of a semiconductor fin, forming a gate spacer layer over the gate stack and the semiconductor fin, and patterning the gate spacer layer. The resulting spacers include a gate spacer on a sidewall of the gate stack, and a fin spacer on a sidewall of an end portion of the semiconductor fin. The fin spacer is then etched. When the etching is finished, a height of the fin spacer is smaller than about a half of the height of the semiconductor fin.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 31, 2016
    Inventors: Jam-Wem Lee, Tsung-Che Tsai, Yi-Feng Chang
  • Publication number: 20160027704
    Abstract: A chip includes a dielectric layer having a top surface and a bottom surface, a first semiconductor layer overlying and bonded to the top surface of the dielectric layer, and a first Metal Oxide-Semiconductor (MOS) transistor of a first conductivity type. The first MOS transistor includes a first gate dielectric overlying and contacting the first semiconductor layer, and a first gate electrode overlying the first gate dielectric. A second semiconductor layer is underlying and bonded to the bottom surface of the dielectric layer. A second MOS transistor of a second conductivity type opposite to the first conductivity type includes a second gate dielectric underlying and contacting the second semiconductor layer, and a second gate electrode underlying the second gate dielectric.
    Type: Application
    Filed: October 8, 2015
    Publication date: January 28, 2016
    Inventor: Jam-Wem Lee
  • Patent number: 9245878
    Abstract: An ESD protection circuit includes at least a first and a second silicon controlled rectifier (SCR) circuits. The first SCR circuit is coupled between the pad and the positive power supply terminal. The second SCR circuit is coupled between the pad and the ground terminal. At least one of the SCR circuits is configured to selectively provide a short or relatively conductive electrical path between the pad and one of the positive power supply terminal and the ground terminal.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: January 26, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Hsiang Song, Jam-Wem Lee, Tzu-Heng Chang, Yu-Ying Hsu
  • Publication number: 20160013307
    Abstract: A chip includes a semiconductor substrate, a well region in the semiconductor substrate, and a Dynamic Threshold Metal-Oxide Semiconductor (DTMOS) transistor formed at a front side of the semiconductor substrate. The DTMOS transistor includes a gate electrode, and a source/drain region adjacent to the gate electrode. The source/drain region is disposed in the well region. A well pickup region is in the well region, and the well pickup region is at a back side of the semiconductor substrate. The well pickup region is electrically connected to the gate electrode.
    Type: Application
    Filed: September 24, 2015
    Publication date: January 14, 2016
    Inventor: Jam-Wem Lee
  • Patent number: 9230961
    Abstract: A semiconductor arrangement includes a well region and a first region disposed within the well region. The first region includes a first conductivity type. The semiconductor arrangement includes a first gate disposed above the well region on a first side of the first region. The first gate includes a first top surface facing away from the well region. The first top surface has a first top surface area. The semiconductor arrangement includes a first gate contact disposed above the first gate. The first gate contact includes a first bottom surface facing towards the well region. The first bottom surface has a first bottom surface area. The first bottom surface area covers at least about two thirds of the first top surface area.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: January 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ming-Hsiang Song, Jam-Wem Lee, Yi-Feng Chang, Wun-Jie Hung Lin
  • Patent number: 9224727
    Abstract: An ESD protection apparatus comprises an n-type substrate with a first doping density, a low voltage n-type well in the substrate, a low voltage p-type well in the substrate, a first n-type semiconductor region over the low voltage n-type well and a second n-type semiconductor region over the low voltage p-type well, wherein the first semiconductor region and the second semiconductor region are separated by a first isolation region.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: December 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jam-Wem Lee, Yi-Feng Chang
  • Patent number: 9214540
    Abstract: One or more techniques or systems for forming an n-type metal oxide semiconductor (NMOS) transistor for electrostatic discharge (ESD) are provided herein. In some embodiments, the NMOS transistor includes a first region, a first n-type plus (NP) region, a first p-type plus (PP) region, a second NP region, a second PP region, a shallow trench isolation (STI) region, and a gate stack. In some embodiments, the first PP region is between the first NP region and the second NP region. In some embodiments, the second NP region is between the first PP region and the second PP region, the gate stack is between the first PP region and the second NP region, the STI region is between the second NP region and the second PP region. Accordingly, the first PP region enables ESD current to discharge based on a low trigger voltage for the NMOS transistor.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: December 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tsung-Che Tsai, Jam-Wem Lee
  • Patent number: 9214398
    Abstract: A chip includes a semiconductor substrate, a well region in the semiconductor substrate, and a transistor formed at a front side of the semiconductor substrate. A source/drain region of the transistor is disposed in the well region. A well pickup region is disposed in the well region, wherein the well pickup region is at a back side of the semiconductor substrate. A through-via penetrates through the semiconductor substrate, wherein the through-via electrically inter-couples the well pickup region and the source/drain region.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: December 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jam-Wem Lee