Patents by Inventor James Coles

James Coles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7883673
    Abstract: Apparatus for producing nano-particles includes a furnace defining a vapor region therein. A precipitation conduit having an inlet end and an outlet end is positioned with respect to the furnace so that the inlet end is open to the vapor region. A quench fluid supply apparatus supplies quench fluid in a gas state and quench fluid in a liquid state. A quench fluid port positioned within the precipitation conduit is fluidically connected to the quench fluid supply apparatus so that an inlet to the quench fluid port receives quench fluid in the gas state and quench fluid in the liquid state. The quench fluid port provides a quench fluid stream to the precipitation conduit to precipitate nano-particles within the precipitation conduit. A product collection apparatus connected to the outlet end of the precipitation conduit collects nano-particles produced within the precipitation conduit.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: February 8, 2011
    Assignee: Cyprus Amax Minerals Company
    Inventors: Joel A. Taube, Mohamed H. Khan, James A. Cole
  • Patent number: 7877144
    Abstract: Methods for optimizing the atrio-ventricular (A-V) delay for efficacious delivery of cardiac resynchronization therapy. In CRT devices, the programmed A-V delay starts with detection of electrical activity in the right atrium (RA). Thus, a major component of the A-V delay is the time required for inter-atrial conduction time (IACT) from the RA to the LA. This IACT can be measured during implantation as the time from the atrial lead stimulation artifact to local electrograms in a coronary sinus (CS) catheter. Assuming that the beginning of LA contraction closely corresponds with the beginning of LA electrical activity, the optimal AV delay should be related to the time between the start of RA electrical activity and the start of LA electrical activity plus the duration of LA atrial contraction. Thus ‘during atrial pacing’ the IACT measured at implantation is correlated with the echocardiographically defined optimal paced AV delay (PAV).
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: January 25, 2011
    Assignee: Medtronic, Inc.
    Inventors: James A. Coles, Jr., Michael R. Ujhelyi, Mehdi Razavi, Vadim Levin
  • Publication number: 20100296038
    Abstract: The instant invention relates to liquid crystal media comprising one or more bimesogenic compounds, one or more chiral dopants and one or more additives, liquid crystal displays comprising these media, in particular displays exploiting the flexoelectric effect and to a method of improving the response time of such displays.
    Type: Application
    Filed: May 16, 2007
    Publication date: November 25, 2010
    Inventors: Louise Diane Farrand, Harry James Coles, Mikhail N. Rivnenko, Yong-il Cho
  • Publication number: 20100292768
    Abstract: Electrical medical leads having active fixation electrodes, particularly helix electrodes intended to be screwed into body tissue, e.g., the heart, are disclosed having selectively applied insulation to optimize exposed electrode surface area and dispose the exposed electrode surface area toward tissue that is less traumatized by injury caused by screwing in the fixation helix. In a preferred fabrication method, an outer helical surface is masked by contact with a masking tube while a dielectric coating is applied to the inner helical surface of the coil turns of the helix, and the masking tube is removed when the dielectric coating has set. In one variation, at least one aperture is formed through the masking tube sidewall exposing an area of the outer helical surface thereby interrupting the uninsulated outer helical electrode.
    Type: Application
    Filed: May 18, 2010
    Publication date: November 18, 2010
    Applicant: Medtronic, Inc.
    Inventors: John L. Sommer, Daniel C. Sigg, James A. Coles, JR.
  • Publication number: 20100283927
    Abstract: A liquid crystal formulation is described. The liquid crystal formulation comprises a first oligosiloxane-modified nano-phase segregating liquid crystalline material; and at least one additional material selected from a second oligosiloxane-modified nano-phase segregating liquid crystalline material, non-liquid crystalline oligosiloxane-modified materials, organic liquid crystalline materials, or organic non-liquid crystalline materials, wherein the liquid crystal formulation is nano-phase segregated in the SmC* phase, has an I?SmC* phase transition, with a SmC* temperature range from about 15° C. to about 35° C., has a tilt angle of about 22.5°±6° or about 45°±6°, and has a spontaneous polarization of less than about 50 nC/cm2, and a rotational viscosity of less than about 600 cP. Devices containing liquid crystal formulations are also described.
    Type: Application
    Filed: October 19, 2007
    Publication date: November 11, 2010
    Applicants: DOW CORNING CORPORATION, CAMBRIDGE ENTERPRISE LTD.
    Inventors: Jonathan Paul Hannington, Terry Victor Clapp, Fumito Nishida, Russell Keith King, Omar Farooq, Martin Grasmann, William Alden Crossland, Harry James Coles, Anthony Bernard Davey, Huan Xu, Oliver Hadeler, Mykhaylo Pivnenko
  • Publication number: 20100283925
    Abstract: A liquid crystal formulation is described. The liquid crystal formulation comprises a first oligosiloxane-modified nano-phase segregating liquid crystalline material; and at least one additional material selected from a second oligosiloxane-modified nano-phase segregating liquid crystalline material, non-liquid crystalline oligosiloxane-modified materials, organic liquid crystalline materials, or non-liquid crystalline materials, wherein the liquid crystal formulation has an I?SmA*?SmC* phase transition, with a SmC* temperature range from about 15° C. to about 35° C., a tilt angle of about 22.5°±6° or about 45°±6°, a spontaneous polarization of less than about 50 nC/cm2., and a rotational viscosity of less than about 600 cP. Devices containing liquid crystal formulations are also described.
    Type: Application
    Filed: October 26, 2007
    Publication date: November 11, 2010
    Applicants: DOW CORNING CORPORATION, CAMBRIDGE ENTERPRISE LTD.
    Inventors: Jonathan Paul Hannington, Terry Victor Clapp, Fumito Nishida, Russell Keith King, Omar Farooq, Martin Grasmann, William Alden Crossland, Harry James Coles, Anthony Bernard Davey, Huan Xu, Oliver Hadeler, Mykhaylo Pivnenko
  • Patent number: 7829060
    Abstract: Nano-particle of MoO3. The nano-particle of the present invention has a surface area in the range of 33 to about 68 m2/g as determined by BET. The nano-particle may also have a rod-like non-hollow configuration.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: November 9, 2010
    Assignee: Cyprus Amax Minerals Company
    Inventors: Joel A. Taube, Mohamed H. Khan, James A. Cole
  • Patent number: 7778768
    Abstract: A system and method for reducing airport delays using passive radar information and analytics. The system includes (a) a data receiving arrangement receiving, from a data source, at least one type of information for a plurality of aircraft; (b) a data processing arrangement calculating efficiency data based on the received information; and (c) a data distribution arrangement organizing efficiency data into a displayable file and distribute the file to users of the system.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: August 17, 2010
    Assignee: PASSUR Aerospace, Inc.
    Inventors: James Barry, James Cole, Thomas O'Halloran
  • Patent number: 7749463
    Abstract: Apparatus for producing nano-particles comprises a furnace defining a vapor region therein. A precipitation conduit having an inlet end and an outlet end is positioned with respect to the furnace so that the inlet end is open to the vapor region. A quench fluid port positioned within the precipitation conduit provides a quench fluid stream to the precipitation conduit to precipitate nano-particles within the precipitation conduit. A product collection apparatus connected to the outlet end of the precipitation conduit collects the nano-particles produced within the precipitation conduit.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: July 6, 2010
    Assignee: Cyprus Amax Minerals Company
    Inventors: Mohamed H. Khan, James A. Cole, Joel A. Taube
  • Publication number: 20100137963
    Abstract: A method for fabricating an implantable medical electrode includes roughening the electrode substrate, applying an adhesion layer, and depositing a valve metal oxide coating over the adhesion layer under conditions optimized to minimize electrode impedance and post-pulse polarization. The electrode substrate may be a variety of electrode metals or alloys including titanium, platinum, platinum-iridium, or niobium. The adhesion layer may be formed of titanium or zirconium. The valve metal oxide coating is a ruthenium oxide coating sputtered onto the adhesion layer under controlled target power, sputtering pressure, and sputter gas ratio setting optimized to minimize electrode impedance and post-pulse polarization.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 3, 2010
    Applicant: Medtronic, Inc.
    Inventors: Lea A. Nygren, James A. Coles, JR., Scott J. Brabec, Randy G. Rose
  • Patent number: 7720550
    Abstract: Electrical medical leads having active fixation electrodes, particularly helix electrodes intended to be screwed into body tissue, e.g., the heart, are disclosed having selectively applied insulation to optimize exposed electrode surface area and dispose the exposed electrode surface area toward tissue that is less traumatized by injury caused by screwing in the fixation helix. In a preferred fabrication method, an outer helical surface is masked by contact with a masking tube while a dielectric coating is applied to the inner helical surface of the coil turns of the helix, and the masking tube is removed when the dielectric coating has set. In one variation, at least one aperture is formed through the masking tube sidewall exposing an area of the outer helical surface thereby interrupting the uninsulated outer helical electrode.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: May 18, 2010
    Assignee: Medtronic, Inc.
    Inventors: John L Sommer, Daniel C Sigg, James A Coles, Jr.
  • Publication number: 20100042701
    Abstract: A novel and non-trivial system and method for restrictively exchanging product data between communication devices of a limited-user network is disclosed. A processor in communication with a plurality of user communication devices of a limited-user network is used for controlling and restricting the exchange of product data. In such network, the processor may establish a communication connection with an initiating communication device of an initiating user, receive initiating product data from the initiating communication device and corresponding first users (e.g., defined trusted users) data, provide the initiating product data to at least one available first user communication device, receive responding product data responsive to the initiating product data, and provide the responding product data to the initiating communication device.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 18, 2010
    Inventor: Robert James Cole
  • Publication number: 20100016740
    Abstract: A cardiac ischemic protection system and method for conditioning a patient's heart is provided. The method can include detecting acute myocardial infarction, angina pectoris, silent ischemia, or stunning and providing closed-loop dyssynchronous pacing to the patient's heart to precondition and/or postcondition the patient's heart in order to reduce ischemic damage.
    Type: Application
    Filed: July 15, 2008
    Publication date: January 21, 2010
    Inventors: Daniel C. Sigg, James A. Coles, JR., Dwight H. Warkentin, Deborah Ann Jaye
  • Patent number: 7622098
    Abstract: Method for producing nano-particles includes vaporizing a precursor material to produce a vapor, directing the vapor into an isolation chamber, combining a quench fluid in a gaseous state with a quench fluid in a liquid state to form a quench fluid stream, contacting the vapor contained in the isolation chamber with the quench fluid stream thereby cooling the vapor to produce the nano-particles in a carrier stream, and removing the nano-particles from the isolation chamber.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: November 24, 2009
    Assignee: Cyprus Amax Minerals Company
    Inventors: Joel A. Taube, Mohamed H. Khan, James A. Cole
  • Patent number: 7604303
    Abstract: A pedal travel audit assembly adapted for measuring the applied force to and resultant pedal travel of a brake pedal includes first and second sensors and an electronic control unit, wherein the second sensor is configured to wirelessly detect the relative distance between the pedal and a remaining structure spaced from and unsupportive of the pedal, and the electronic control unit is configured to cause an output relative to the distance to be generated.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 20, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: James A. Cole, Kennedy U. Odumodu, Richard E. Raymond
  • Patent number: 7596415
    Abstract: The present invention relates generally to medical devices; in particular and without limitation, to unique electrodes and/or electrical lead assemblies for stimulating cardiac tissue, muscle tissue, neurological tissue, brain tissue and/or organ tissue; to electrophysiology mapping and ablation catheters for monitoring and selectively altering physiologic conduction pathways; and, wherein said electrodes, lead assemblies and catheters optionally include fluid irrigation conduit(s) for providing therapeutic and/or performance enhancing materials to adjacent biological tissue, and wherein each said device is coupled to or incorporates nanostructure or materials therein. The present invention also provides methods for fabricating, deploying, and operating such medical devices.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: September 29, 2009
    Assignee: Medtronic, Inc.
    Inventors: Scott J. Brabec, Kenneth C. Gardeski, Suping Lyu, James A. Coles, Jr., Christopher M. Hobot
  • Patent number: 7588942
    Abstract: A whole-blood-based substitute composition that is useful in coagulation assays as a standard, reference, control, calibrator, linearity verifier, or training material is prepared by combining a red blood cell lysate that is free of plasma, leukocytes, and platelets with a platelet-free plasma of human origin and an antimicrobial agent.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: September 15, 2009
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Timothy Ho, James Cole, Alireza Ebrahim
  • Patent number: 7572430
    Abstract: Apparatus for producing nano-particles according to the present invention may comprise a furnace defining a vapor region therein. A precipitation conduit having an inlet end and an outlet end is positioned with respect to the furnace so that the inlet end is open to the vapor region. A quench fluid supply apparatus supplies quench fluid in a gas state and quench fluid in a liquid state. A quench fluid port positioned within the precipitation conduit is fluidically connected to the quench fluid supply apparatus so that an inlet to the quench fluid port receives quench fluid in the gas state and quench fluid in the liquid state. The quench fluid port provides a quench fluid stream to the precipitation conduit to precipitate nano-particles within the precipitation conduit. A product collection apparatus connected to the outlet end of the precipitation conduit collects the nano-particles produced within the precipitation conduit.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: August 11, 2009
    Assignee: Cyprus Amax Minerals Company
    Inventors: Joel A. Taube, Mohamed H. Khan, James A. Cole
  • Publication number: 20090188789
    Abstract: A method for producing a metal article according to one embodiment may include: Providing a supply of a sodium/molybdenum composite metal powder; compacting the sodium/molybdenum composite metal powder under sufficient pressure to form a preformed article; placing the preformed article in a sealed container; raising the temperature of the sealed container to a temperature that is lower than a sintering temperature of molybdenum; and subjecting the sealed container to an isostatic pressure for a time sufficient to increase the density of the article to at least about 90% of theoretical density.
    Type: Application
    Filed: February 25, 2009
    Publication date: July 30, 2009
    Applicant: Climax Engineered Materials, LLC
    Inventors: Dave Honecker, Christopher Michaluk, Carl Cox, James Cole
  • Patent number: 7560283
    Abstract: The present invention provides a cellular whole-blood D-dimer composition for use with diagnostic test procedures for D-dimer, and a method of its preparation. The composition comprises human erythrocytes and processed plasma to which D-dimer, and stabilizers, and optionally antimicrobial agents, are added and can be used as a standard and control for D-dimer testing.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: July 14, 2009
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Timothy Ho, Sholeh Zaminasli, James Cole, Alireza Ebrahim