Patents by Inventor James Ellison

James Ellison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170327411
    Abstract: Disclosed herein are opaque glass-ceramics comprising at least one nepheline crystal phase and comprising from about 30 mol % to about 65 mol % SiO2, from about 15 mol % to about 40 mol % Al2O3, from about 10 mol % to about 20 mol % (Na2O+K2O), and from about 1 mol % to about 10 mol % (ZnO+MgO). Also disclosed herein are opaque-glass ceramics comprising at least one nepheline crystal phase and at least one spinel-structure phase doped with at least one colorant chosen from transition metals and rare earth elements. Further disclosed herein are methods for making these opaque glass-ceramics.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 16, 2017
    Inventors: Adam James Ellison, Lisa Anne Moore, Taheisha Linette Werner
  • Patent number: 9809487
    Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O—Al2O3—ZrO2)—B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: November 7, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
  • Patent number: 9802857
    Abstract: Substantially alkali free glasses are disclosed with can be used to produce substrates for flat panel display devices, e.g., active-matrix liquid crystal displays (AMLCDs). The glasses have high annealing temperatures and etch rates. Methods for producing substantially alkali free glasses using a downdraw process (e.g., a fusion process) are also disclosed.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 31, 2017
    Assignee: Corning Incorporated
    Inventors: Bradley Frederick Bowden, Adam James Ellison, Timothy James Kiczenski
  • Publication number: 20170291845
    Abstract: Alkali-doped boroaluminosilicate glasses are provided. The glasses include the network formers SiO2, B2O3, and Al2O3. The glass may, in some embodiments, have a Young's modulus of less than about 65 GPa and/or a coefficient of thermal expansion of less than about 40×10?7/° C. The glass may be used as a cover glass for electronic devices, a color filter substrate, a thin film transistor substrate, or an outer clad layer for a glass laminate.
    Type: Application
    Filed: April 4, 2017
    Publication date: October 12, 2017
    Inventors: Adam James Ellison, Jason Sanger Frackenpohl, John Christopher Mauro, Douglas Miles Noni, JR., Natesan Venkataraman
  • Publication number: 20170267573
    Abstract: Fusion-formable sodium-containing aluminosilicate and boroaluminosilicate glasses are described. The glasses are particularly useful for controlled release of sodium—useful in semiconductor applications, such as thin film photovoltaics where the sodium required to optimize cell efficiency is to be derived from the substrate glass.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Bruce Gardiner Aitken, Adam James Ellison, James Patrick Hamilton, Timothy James Kiczenski
  • Publication number: 20170260084
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
    Type: Application
    Filed: May 13, 2015
    Publication date: September 14, 2017
    Inventors: Bradley Frederick Bowden, Adam James Ellison, Ellen Anne King
  • Patent number: 9751802
    Abstract: A method of making a strengthened glass article. The method includes altering the glass structure and subsequently creating a compressive layer extending from the surface of the glass to a depth of layer. In some embodiments, the structure is altered by heat treating the glass at a temperature that is less than the annealing point of the glass, and the compressive layer is formed by ion exchange. A strengthened glass article made by the method is also provided.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: September 5, 2017
    Assignee: Corning Incorporated
    Inventors: Douglas Clippinger Allan, Adam James Ellison, John Christopher Mauro
  • Publication number: 20170247287
    Abstract: According to one embodiment, a glass article may include a glass body having a first surface and a second surface opposite the first surface. The first surface and the second surface each have a radius of curvature. The first surface of the glass body comprises a flaw population extending from the first surface into a thickness of the glass body with a maximum initial flaw depth Ai. The first surface of the glass body may be etched to a depth less than or equal to about 25% of the maximum initial flaw depth Ai of the flaw population present in the first surface. When the glass article is under uniaxial compressive loading, at least a portion of the first surface is in tension and a uniaxial compressive strength of the glass article is greater than or equal to 90% of a uniaxial compressive strength of a flaw-free glass article.
    Type: Application
    Filed: September 4, 2015
    Publication date: August 31, 2017
    Applicant: CORNING INCORPORATED
    Inventors: Steven Edward DeMartino, Adam James Ellison, Kyle Christopher Hoff
  • Publication number: 20170247285
    Abstract: Compounds, compositions, articles, devices, and methods for the manufacture of light guide plates and back light units including such light guide plates made from glass. In some embodiments, light guide plates (LGPs) are provided that have similar or superior optical properties to light guide plates made from PMMA and that have exceptional mechanical properties such as rigidity, CTE and dimensional stability in high moisture conditions as compared to PMMA light guide plates.
    Type: Application
    Filed: May 12, 2017
    Publication date: August 31, 2017
    Inventors: Adam James Ellison, Jacques Gollier, Timothy James Kiczenski, Ellen Anne King, Luis Alberto Zenteno
  • Patent number: 9718725
    Abstract: Disclosed herein are opaque glass-ceramics comprising at least one nepheline crystal phase and comprising from about 30 mol % to about 65 mol % SiO2, from about 15 mol % to about 40 mol % Al2O3, from about 10 mol % to about 20 mol % (Na2O+K2O), and from about 1 mol % to about 10 mol % (ZnO+MgO). Also disclosed herein are opaque-glass ceramics comprising at least one nepheline crystal phase and at least one spinel-structure phase doped with at least one colorant chosen from transition metals and rare earth elements. Further disclosed herein are methods for making these opaque glass-ceramics.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: August 1, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Adam James Ellison, Lisa Anne Moore, Taheisha Linette Werner
  • Patent number: 9714192
    Abstract: Ion exchangeable glass compositions that develop concentration profiles and stress profiles that have higher magnitudes of concentration and compressive stress profiles than those provided by the error function (erfc)-shaped compressive stress profile for similar surface concentrations of stress-inducing components such as K+ or K2O and stresses. The advantaged stress profile is the result of a glass composition that is low in K2O (or potassium) in the base glass prior to ion exchange. A glass comprising lower amounts of K+ or K2O has a stronger dependence of diffusivity on concentration, leading to a non-erfc-shaped concentration profile. Several glass compositions that contain low amounts of K+ or K2O exhibit this beneficial effect, whereas other glasses containing higher amounts of K+ or K2O do not exhibit this effect.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: July 25, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Adam James Ellison, Benjamin Zain Hanson, Rostislav Vatchev Roussev
  • Patent number: 9701567
    Abstract: Fusion-formable sodium-containing aluminosilicate and boroaluminosilicate glasses are described. The glasses are particularly useful for controlled release of sodium—useful in semiconductor applications, such as thin film photovoltaics where the sodium required to optimize cell efficiency is to be derived from the substrate glass.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: July 11, 2017
    Assignee: Corning Incorporated
    Inventors: Bruce Gardiner Aitken, Adam James Ellison, James Patrick Hamilton, Timothy James Kiczenski
  • Publication number: 20170152170
    Abstract: Substantially alkali free glasses are disclosed with can be used to produce substrates for flat panel display devices, e.g., active-matrix liquid crystal displays (AMLCDs). The glasses have high annealing temperatures and etch rates. Methods for producing substantially alkali free glasses using a downdraw process (e.g., a fusion process) are also disclosed. Consumer electronic products comprising glass sheets are also disclosed.
    Type: Application
    Filed: February 9, 2017
    Publication date: June 1, 2017
    Inventors: Bradley Frederick Bowden, Adam James Ellison, Xiaoju Guo, Timothy James Kiczenski
  • Publication number: 20170144918
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess excellent compaction and stress relaxation properties.
    Type: Application
    Filed: February 6, 2017
    Publication date: May 25, 2017
    Inventors: Douglas Clippinger Allan, Bradley Frederick Bowden, Adam James Ellison, Timothy James Kiczenski, Marcel Potuzak
  • Patent number: 9643884
    Abstract: Alkali-doped boroaluminosilicate glasses are provided. The glasses include the network formers SiO2, B2O3, and Al2O3. The glass may, in some embodiments, have a Young's modulus of less than about 65 GPa and/or a coefficient of thermal expansion of less than about 40×10?7/° C. The glass may be used as a cover glass for electronic devices, a color filter substrate, a thin film transistor substrate, or an outer clad layer for a glass laminate.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: May 9, 2017
    Assignee: Corning Incorporated
    Inventors: Adam James Ellison, Jason Sanger Frackenpohl, John Christopher Mauro, Douglas Miles Noni, Jr., Natesan Venkataraman
  • Publication number: 20170115700
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: January 4, 2017
    Publication date: April 27, 2017
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 9604870
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: March 28, 2017
    Assignee: Corning Incorporated
    Inventors: Adam James Ellison, Timothy James Kiczenski, Shawn Rachelle Markham, John Christopher Mauro
  • Publication number: 20170076024
    Abstract: Computer-implemented methods and apparatus are provided for predicting/estimating (i) a non-equilibrium viscosity for at least one given time point in a given temperature profile for a given glass composition, (ii) at least one temperature profile that will provide a given non-equilibrium viscosity for a given glass composition, or (iii) at least one glass composition that will provide a given non-equilibrium viscosity for a given time point in a given temperature profile. The methods and apparatus can be used to predict/estimate stress relaxation in a glass article during forming as well as compaction, stress relaxation, and/or thermal sag or thermal creep of a glass article when the article is subjected to one or more post-forming thermal treatments.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 16, 2017
    Inventors: Douglas Clippinger Allan, Adam James Ellison, Xiaoju Guo, Timothy James Kiczenski, John Christopher Mauro, Marcel Potuzak
  • Patent number: 9573839
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess excellent compaction and stress relaxation properties.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: February 21, 2017
    Assignee: Corning Incorporated
    Inventors: Douglas Clippinger Allan, Bradley Frederick Bowden, Adam James Ellison, Timothy James Kiczenski, Marcel Potuzak
  • Patent number: 9556058
    Abstract: A glass that is down-drawable and ion exchangeable. The glass has a temperature T35kp which the viscosity is 35 kilopoise. T35kp is less than the breakdown temperature Tbreakdown of zircon.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: January 31, 2017
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Adam James Ellison, Benjamin Zain Hanson