Patents by Inventor James S. Speck

James S. Speck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130299776
    Abstract: A III-nitride based semipolar LED with a light output power of at least 100 milliwatts (mW), or with an External Quantum Efficiency (EQE) of at least 50%, for a current density of at least 100 Amps per centimeter square (A/cm2).
    Type: Application
    Filed: May 9, 2013
    Publication date: November 14, 2013
    Applicant: The Regents of the University of California
    Inventors: Shuji Nakamura, Steven P. DenBaars, Daniel F. Feezell, James S. Speck, Chih-Chien Pan, Shinichi Tanaka
  • Publication number: 20130299777
    Abstract: A III-nitride based LED with an External Quantum Efficiency (EQE) droop of less than 10% when a junction temperature of the LED is increased from 20 ° C. to at least 100 ° C. at a current density of the LED of at least 20 Amps per centimeter square.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 14, 2013
    Applicant: The Regents of the University of California
    Inventors: Shuji Nakamura, Steven P. DenBaars, Daniel F. Feezell, James S. Speck, Chih-Chien Pan
  • Patent number: 8574525
    Abstract: Boron-containing compounds, gasses and fluids are used during ammonothermal growth of group-Ill nitride crystals. Boron-containing compounds are used as impurity getters during the ammonothermal growth of group-Ill nitride crystals. In addition, a boron-containing gas and/or supercritical fluid is used for enhanced solubility of group-Ill nitride into said fluid.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 5, 2013
    Assignee: The Regents of the University of California
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Patent number: 8569085
    Abstract: A photoelectrochemical (PEC) etch is performed for chip shaping of a device comprised of a III-V semiconductor material, in order to extract light emitted into guided modes trapped in the III-V semiconductor material. The chip shaping involves varying an angle of incident light during the PEC etch to control an angle of the resulting sidewalls of the III-V semiconductor material. The sidewalls may be sloped as well as vertical, in order to scatter the guided modes out of the III-V semiconductor material rather than reflecting the guided modes back into the III-V semiconductor material. In addition to shaping the chip in order to extract light emitted into guided modes, the chip may be shaped to act as a lens, to focus its output light, or to direct its output light in a particular way.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: October 29, 2013
    Assignee: The Regents of the University of California
    Inventors: Adele Tamboli, Evelyn L. Hu, James S. Speck
  • Publication number: 20130263775
    Abstract: A method and apparatus for growing crystals in a reactor vessel, wherein the reactor vessel uses carbon fiber containing materials as a structural element to contain the materials for growing the crystals as a solid, liquid or gas within the reactor vessel, such that the reactor vessel can withstand pressures or temperatures necessary for the growth of the crystals. The carbon fiber containing materials encapsulate at least one component of the reactor vessel, wherein stresses from the encapsulated component are transferred to the carbon fiber containing materials. The carbon fiber containing materials may be wrapped around the encapsulated component one or more times sufficient to maintain a desired pressure differential between an exterior and interior of the encapsulated component.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 10, 2013
    Applicant: The Regents of the University of California
    Inventors: Siddha Pimputkar, Paul Von Dollen, Shuji Nakamura, James S. Speck
  • Publication number: 20130264540
    Abstract: A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.
    Type: Application
    Filed: June 4, 2013
    Publication date: October 10, 2013
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arpan Chakraborty, Benjamin A. Haskell, Stacia Keller, James S. Speck, Steven P. DenBaars, Shuji Nakamura, Umesh K. Mishra
  • Publication number: 20130259080
    Abstract: An epitaxial structure for a III-Nitride based optical device, comprising an active layer with anisotropic strain on an underlying layer, where a lattice constant and strain in the underlying layer are partially or fully relaxed in at least one direction due to a presence of misfit dislocations, so that the anisotropic strain in the active layer is modulated by the underlying layer.
    Type: Application
    Filed: May 29, 2013
    Publication date: October 3, 2013
    Inventors: Hiroaki Ohta, Feng Wu, Anurag Tyagi, Arpan Chakraborty, James S. Speck, Steven P. DenBaars, Shuji Nakamura, Erin C. Young
  • Patent number: 8541869
    Abstract: A III-nitride edge-emitting laser diode is formed on a surface of a III-nitride substrate having a semipolar orientation, wherein the III-nitride substrate is cleaved by creating a cleavage line along a direction substantially perpendicular to a nonpolar orientation of the III-nitride substrate, and then applying force along the cleavage line to create one or more cleaved facets of the III-nitride substrate, wherein the cleaved facets have an m-plane or a-plane orientation.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: September 24, 2013
    Assignee: The Regents of the University of California
    Inventors: Shuji Nakamura, James S. Speck, Steven P. DenBaars, Anurag Tyagi
  • Patent number: 8525230
    Abstract: A field effect transistor including a compositionally graded group-III nitride layer on a silicon substrate.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: September 3, 2013
    Assignee: The Regents of the University of California
    Inventors: Hugues Marchand, Brendan J. Moran, Umesh K. Mishra, James S. Speck
  • Patent number: 8524012
    Abstract: A method for growing planar, semi-polar nitride film on a miscut spinel substrate, in which a large area of the planar, semi-polar nitride film is parallel to the substrate's surface. The planar films and substrates are: (1) {1011} gallium nitride (GaN) grown on a {100} spinel substrate miscut in specific directions, (2) {1013} gallium nitride (GaN) grown on a {110} spinel substrate, (3) {1122} gallium nitride (GaN) grown on a {1100} sapphire substrate, and (4) {1013} gallium nitride (GaN) grown on a {1100} sapphire substrate.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: September 3, 2013
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Troy J. Baker, Benjamin A. Haskell, Paul T. Fini, Steven P. DenBaars, James S. Speck, Shuji Nakamua
  • Publication number: 20130207237
    Abstract: A method for separating a III-nitride layer from a substrate. This is done by fabricating a detachment porous region between the III-nitride layer and the substrate through etching. The porous region allows for easy detachment of the III-nitride layer from the substrate. Active layers for electronic and optoelectronic devices can then be grown on the III-nitride layer.
    Type: Application
    Filed: October 17, 2011
    Publication date: August 15, 2013
    Applicant: The Regents of The University of California
    Inventors: Claude C.A. Weisbuch, James S. Speck
  • Patent number: 8502246
    Abstract: A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: August 6, 2013
    Assignees: The Regents of the University of California, The Japan Science and Technology Agency
    Inventors: Arpan Chakraborty, Benjamin A. Haskell, Stacia Keller, James S. Speck, Steven P. DenBaars, Shuji Nakamura, Umesh K. Mishra
  • Patent number: 8481991
    Abstract: An epitaxial structure for a III-Nitride based optical device, comprising an active layer with anisotropic strain on an underlying layer, where a lattice constant and strain in the underlying layer are partially or fully relaxed in at least one direction due to a presence of misfit dislocations, so that the anisotropic strain in the active layer is modulated by the underlying layer.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: July 9, 2013
    Assignee: The Regents of the University of California
    Inventors: Hiroaki Ohta, Feng Wu, Anurag Tyagi, Arpan Chakraborty, James S. Speck, Steven P. DenBaars, Shuji Nakamura, Erin C. Young
  • Patent number: 8470697
    Abstract: A method of forming a p-type compound semiconductor layer includes increasing a temperature of a substrate loaded into a reaction chamber to a first temperature. A source gas of a Group III element, a source gas of a p-type impurity, and a source gas of nitrogen containing hydrogen are supplied into the reaction chamber to grow the p-type compound semiconductor layer. Then, the supply of the source gas of the Group III element and the source gas of the p-type impurity is stopped and the temperature of the substrate is lowered to a second temperature. The supply of the source gas of nitrogen containing hydrogen is stopped and drawn out at the second temperature, and the temperature of the substrate is lowered to room temperature using a cooling gas. Accordingly, hydrogen is prevented from bonding to the p-type impurity in the p-type compound semiconductor layer.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: June 25, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Ki Bum Nam, Hwa Mok Kim, James S. Speck
  • Patent number: 8465588
    Abstract: A high-quality, large-area seed crystal for ammonothermal GaN growth and method for fabricating. The seed crystal comprises double-side GaN growth on a large-area substrate. The seed crystal is of relatively low defect density and has flat surfaces free of bowing. The seed crystal is useful for producing large-volume, high-quality bulk GaN crystals by ammonothermal growth methods for eventual wafering into large-area GaN substrates for device fabrication.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: June 18, 2013
    Assignee: SORAA, Inc.
    Inventors: Christiane Poblenz, James S. Speck, Derrick S. Kamber
  • Patent number: 8450192
    Abstract: Growth methods for planar, non-polar, Group-III nitride films are described. The resulting films are suitable for subsequent device regrowth by a variety of growth techniques.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: May 28, 2013
    Assignees: The Regents of the University of California, Japan Science and Technology Center
    Inventors: Benjamin A. Haskell, Paul T. Fini, Shigemasa Matsuda, Michael D. Craven, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20130119401
    Abstract: Techniques for processing materials in supercritical fluids including processing in a capsule disposed within a high-pressure apparatus enclosure are disclosed. The disclosed techniques are useful for growing crystals of GaN, AlN, InN, and their alloys, including InGaN, AlGaN, and AlInGaN for the manufacture of bulk or patterned substrates, which in turn can be used to make optoelectronic devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation devices, photodetectors, integrated circuits, and transistors.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 16, 2013
    Applicant: SORAA, INC.
    Inventors: Mark P. D'EVELYN, James S. SPECK, Derrick S. KAMBER, Douglas W. POCIUS
  • Patent number: 8395332
    Abstract: Disclosed is an improved light-emitting device for an AC power operation. An AC light-emitting device according to the present invention employs a variety of means by which light emission time is prolonged during a ½ cycle in response to a phase change of an AC power source and a flicker effect can be reduced. For example, the means may be switching blocks respectively connected to nodes between the light emitting cells, switching blocks connected to a plurality of arrays, or a delay phosphor. Further, there is provided an AC light-emitting device, wherein a plurality of arrays having the different numbers of light emitting cells are employed to increase light emission time and to reduce a flicker effect.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: March 12, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Chung Hoon Lee, James S. Speck, Hong San Kim, Jae Jo Kim, Sung Han Kim, Jae Ho Lee
  • Patent number: 8390011
    Abstract: An opto-electronic device, and a method of fabricating same, wherein the device has a patterned layer that includes a patterned, pierced or perforated mask, and an active layer formed over the patterned layer, wherein a refractive index of the patterned layer and a pattern of holes in the patterned layer are configured for controlling confinement or extraction of light emissions of the active layer into radiative and guided modes.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 5, 2013
    Assignee: The Regents of the University of California
    Inventors: Claude C. A. Weisbuch, Aurelien J. F. David, James S. Speck, Steven P. DenBaars
  • Patent number: 8368179
    Abstract: A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 5, 2013
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: John F. Kaeding, Dong-Seon Lee, Michael Iza, Troy J. Baker, Hitoshi Sato, Benjamin A. Haskell, James S. Speck, Steven P. DenBaars, Shuji Nakamura