Patents by Inventor Jason P. Rolland

Jason P. Rolland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160200052
    Abstract: A build plate for a three-dimensional printer includes: a rigid, optically transparent, gas-impermeable planar base having an upper surface and a lower surface; and a flexible, optically transparent, gas-permeable sheet having an upper and lower surface, the sheet upper surface comprising a build surface for forming a three-dimensional object, the sheet lower surface positioned on the base upper surface. The build plate includes a gas flow enhancing feature configured to increase gas flow to the build surface.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 14, 2016
    Inventors: David Moore, John R. Tumbleston, Edward T. Samulski, Alexander Ermoshkin, Jason P. Rolland, Ariel M. Herrmann, Bob E. Fellers
  • Publication number: 20160160077
    Abstract: A three dimensional object includes (a) a light polymerized first component; and (b) a second solidified component different from the first component. The object is preferably of a polymer blend formed from the first component and the second component, with the polymer blend as an interpenetrating polymer network, a semi-interpenetrating polymer network, or a sequential interpenetrating polymer network. In some preferred embodiments, the second component does not contain a cationic polymerization photoinitiator. In some preferred embodiments, the three dimensional object is produced by the process of continuous liquid interface production.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 9, 2016
    Inventors: Jason P. Rolland, Kai Chen, Justin Poelma, James Goodrich, Robert Pinschmidt, Joseph M. DeSimone, Lloyd M. Robeson
  • Publication number: 20160136889
    Abstract: A method of forming a three-dimensional object is carried out by: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid including a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from the first component; (c) irradiating the build region with light through the optically transparent member to form a solid polymer scaffold from the first component and also advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, and containing the second solidifiable component carried in the scaffold in unsolidified and/or uncured form; and (d) concurrently with or subsequent to the irradiating step, solidifying and/or curing the second solidifiable compone
    Type: Application
    Filed: December 22, 2015
    Publication date: May 19, 2016
    Inventors: Jason P. Rolland, Kai Chen, Justin Poelma, James Goodrich, Robert Pinschmidt, Joseph M. DeSimone, Lloyd M. Robeson
  • Publication number: 20160137838
    Abstract: A method of forming a three-dimensional object of polyurethane, polyurea, or copolymer thereof is carried out by: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid including at least one of: (i) a blocked or reactive blocked prepolymer, (ii) a blocked or reactive blocked diisocyanate, or (iii) a blocked or reactive blocked diisocyanate chain extender; (c) irradiating the build region with light through the optically transparent member to form a solid blocked polymer scaffold and advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, with the intermediate containing the chain extender; and then (d) heating or microwave irradiating the three-dimensional intermediate sufficiently to form from the three-dime
    Type: Application
    Filed: December 22, 2015
    Publication date: May 19, 2016
    Inventors: Jason P. Rolland, Kai Chen, Justin PoeIma, James Goodrich, Robert Pinschmidt, Joseph M. DeSimone, Lloyd M. Robeson
  • Publication number: 20160137839
    Abstract: A polymerizable liquid, or resin, useful for the production by additive manufacturing of a three-dimensional object of polyurethane, polyurea, or a copolymer thereof, is described. The resin includes at least one of (i) a blocked or reactive blocked prepolymer, (ii) a blocked or reactive blocked diisocyanate, or (iii) a blocked or reactive blocked diisocyanate chain extender.
    Type: Application
    Filed: December 22, 2015
    Publication date: May 19, 2016
    Inventors: Jason P. Rolland, Kai Chen, Justin PoeIma, James Goodrich, Robert Pinschmidt, Joseph M. DeSimone, Lloyd M. Robeson
  • Patent number: 9340001
    Abstract: A laminate nanomold includes a layer of perfluoropolyether defining a cavity that has a predetermined shape and a support layer coupled with the layer of perfluoropolyether. The laminate can also include a tie-layer coupling the layer of perfluoropolyether with the support layer. The tie-layer can also include a photocurable component and a thermal curable component. The cavity can have a broadest dimension of less than 500 nanometers.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: May 17, 2016
    Assignee: Liquidia Technologies, Inc.
    Inventors: Jason P. Rolland, Benjamin Maynor, Robert Lyon Henn
  • Publication number: 20160046075
    Abstract: A method of forming a three-dimensional object includes: providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; filling the build region with a polymerizable liquid, irradiating the build region with light through the optically transparent member to form a solid polymer from the polymerizable liquid, and advancing said carrier away from said build surface to form said three-dimensional object from said solid polymer. The irradiating step includes projecting focused light at the build region, and the advancing step is carried out at a rate that is dependent on an average light intensity of the focused light.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 18, 2016
    Inventors: Joseph M. DeSimone, Alexander Ermoshkin, Edward T. Samulski, Jason P. Rolland
  • Publication number: 20160046072
    Abstract: A method of forming a three-dimensional object by bottom-up three-dimensional fabrication by irradiating a polymerizable liquid to produce the three-dimensional object, is described. In the method: (i) a Lewis acid or an oxidizable tin salt (e.g., stannous octoate) is included in said polymerizable liquid in an amount effective to accelerate the formation of said three-dimensional object during said fabrication; and/or (i) the three-dimensional object is irradiated after forming to further polymerize unpolymerized material remaining in the three-dimensional object.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 18, 2016
    Inventors: Jason P. Rolland, Joseph M. DeSimone
  • Publication number: 20160038418
    Abstract: Nano-particles are molded in nano-scale molds fabricated from non-wetting, low surface energy polymeric materials. The nano-particles can include pharmaceutical compositions, taggants, contrast agents, biologic drugs, drug compositions, organic materials, and the like. The molds can be virtually any shape and less than 10 micron in cross-sectional diameter.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 11, 2016
    Inventors: Joseph M. DeSimone, Jason P. Rolland, Ansley Exner Dennis, Edward T. Samulski, R. Jude Samulski, Benjamin W. Maynor, Larken E. Cumberland, Ginger Denison Rothrock, Stephanie Barrett, Alexander Ermoshkin, Andrew James Murphy
  • Publication number: 20150307669
    Abstract: Discrete micro and nanoscale particles are formed in predetermined shapes and sizes and predetermined size dispersions. The particles can also be attached to a film to form arrays of particles on a film. The particles are formed from molding techniques that can include high throughput and continuous particle molding.
    Type: Application
    Filed: May 5, 2015
    Publication date: October 29, 2015
    Inventors: Joseph M. DeSimone, Ginger Denison Rothrock, Benjamin W. Maynor, Jason P. Rolland
  • Publication number: 20150283079
    Abstract: The presently disclosed subject matter describes the use of fluorinated elastomer-based materials, in particular perfluoropolyether (PFPE)-based materials, in high-resolution soft or imprint lithographic applications, such as micro- and nanoscale replica molding, and the first nano-contact molding of organic materials to generate high fidelity features using an elastomeric mold. Accordingly, the presently disclosed subject matter describes a method for producing free-standing, isolated nanostructures of any shape using soft or imprint lithography technique.
    Type: Application
    Filed: March 16, 2015
    Publication date: October 8, 2015
    Inventors: Joseph M. DeSimone, Jason P. Rolland, Benjamin W. Maynor, Larken E. Euliss, Ginger Denison Rothrock, Ansley E. Dennis, Edward T. Samulski, R. Jude Samulski
  • Patent number: 9040090
    Abstract: Discrete micro and nanoscale particles are formed in predetermined shapes and sizes and predetermined size dispersions. The particles can also be attached to a film to form arrays of particles on a film. The particles are formed from molding techniques that can include high throughput and continuous particle molding.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: May 26, 2015
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Joseph M. DeSimone, Ginger Denison Rothrock, Benjamin W. Maynor, Jason P. Rolland
  • Publication number: 20150101743
    Abstract: A laminate nanomold includes a layer of perfluoropolyether defining a cavity that has a predetermined shape and a support layer coupled with the layer of perfluoropolyether. The laminate can also include a tie-layer coupling the layer of perfluoropolyether with the support layer. The tie-layer can also include a photocurable component and a thermal curable component. The cavity can have a broadest dimension of less than 500 nanometers.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Applicant: LIQUIDIA TECHNOLOGIES, INC.
    Inventors: Jason P. Rolland, Benjamin Maynor, Robert Lyon Henn
  • Patent number: 8992992
    Abstract: The presently disclosed subject matter describes the use of fluorinated elastomer-based materials, in particular perfluoropolyether (PFPE)-based materials, in high-resolution soft or imprint lithographic applications, such as micro- and nanoscale replica molding, and the first nano-contact molding of organic materials to generate high fidelity features using an elastomeric mold. Accordingly, the presently disclosed subject matter describes a method for producing free-standing, isolated nanostructures of any shape using soft or imprint lithography technique.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: March 31, 2015
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Joseph M. DeSimone, Jason P. Rolland, Benjamin W. Maynor, Larken E. Euliss, Ginger Denison Rothrock, Ansley E. Dennis, Edward T. Samulski, R. Jude Samulski
  • Patent number: 8945441
    Abstract: A laminate nanomold includes a layer of perfluoropolyether defining a cavity that has a predetermined shape and a support layer coupled with the layer of perfluoropolyether. The laminate can also include a tie-layer coupling the layer of perfluoropolyether with the support layer. The tie-layer can also include a photocurable component and a thermal curable component. The cavity can have a broadest dimension of less than 500 nanometers.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: February 3, 2015
    Assignee: Liquidia Technologies, Inc.
    Inventors: Jason P. Rolland, Benjamin Maynor, Robert Lyon Henn
  • Publication number: 20140131915
    Abstract: A laminate nanomold includes a layer of perfluoropolyether defining a cavity that has a predetermined shape and a support layer coupled with the layer of perfluoropolyether. The laminate can also include a tie-layer coupling the layer of perfluoropolyether with the support layer. The tie-layer can also include a photocurable component and a thermal curable component. The cavity can have a broadest dimension of less than 500 nanometers.
    Type: Application
    Filed: January 17, 2014
    Publication date: May 15, 2014
    Applicant: Liquidia Technologies, Inc.
    Inventors: Jason P. Rolland, Benjamin Maynor, Robert Lyon Henn
  • Patent number: 8662878
    Abstract: A laminate nanomold includes a layer of perfluoropolyether defining a cavity that has a predetermined shape and a support layer coupled with the layer of perfluoropolyether. The laminate can also include a tie-layer coupling the layer of perfluoropolyether with the support layer. The tie-layer can also include a photocurable component and a thermal curable component. The cavity can have a broadest dimension of less than 500 nanometers.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 4, 2014
    Assignee: Liquidia Technologies, Inc.
    Inventors: Jason P. Rolland, Benjamin Maynor, Robert Lyon Henn
  • Publication number: 20130228950
    Abstract: Materials and methods are provided for fabricating microfluidic devices. The materials include low surface energy fluoropolymer compositions having multiple cure functional groups. The materials can include multiple photocurable and/or thermal-curable functional groups such that laminate devices can be fabricated. The materials also substantially do not swell in the presence of hydrocarbon solvents.
    Type: Application
    Filed: April 9, 2013
    Publication date: September 5, 2013
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Joseph M. DeSimone, Jason P. Rolland, Ginger M. Denison Rothrock, Paul Resnick
  • Patent number: 8444899
    Abstract: Materials and Methods are provided for fabricating microfluidic devices. The materials include low surface energy fluoropolymer compositions having multiple cure functional groups. The materials can include multiple photocurable and/or thermal-curable functional groups such that laminate devices can be fabricated. The materials also substantially do not swell in the presence of hydrocarbon solvents.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: May 21, 2013
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Joseph M. DeSimone, Jason P. Rolland, Ginger M. Denison Rothrock, Paul Resnick
  • Patent number: 8439666
    Abstract: A laminate nanomold includes a layer of perfluoropolyether defining a cavity that has a predetermined shape and a support layer coupled with the layer of perfluoropolyether. The laminate can also include a tie-layer coupling the layer of perfluoropolyether with the support layer. The tie-layer can also include a photocurable component and a thermal curable component. The cavity can have a broadest dimension of less than 500 nanometers.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: May 14, 2013
    Assignee: Liquidia Technologies, Inc.
    Inventors: Jason P. Rolland, Benjamin Maynor, Robert Lyon Henn