Patents by Inventor Jason R. Lesko

Jason R. Lesko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170164997
    Abstract: An end effector of an instrument is positioned in a patient. An ultrasonic blade of the end effector is positioned against tissue in the patient. The ultrasonic blade is activated to vibrate ultrasonically while the ultrasonic blade is positioned against tissue. At least one electrode of the end effector is positioned against tissue in the patient. The at least one electrode is activated to apply RF electrosurgical energy to tissue against which the at least one electrode is positioned against tissue.
    Type: Application
    Filed: November 18, 2016
    Publication date: June 15, 2017
    Inventors: Gregory W. Johnson, Jason R. Lesko, Frederick L. Estera, Amy M. Krumm, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, John A. Hibner, Nathan Cummings, Ellen Gentry, William D. Dannaher, Christina M. Hough, Joseph Isosaki, Craig N. Faller, Shan Wan, Adam Brown, Candice Otrembiak, Eitan T. Wiener, Jeffrey D. Messerly, Kai Chen, Matthew C. Miller, William E. Clem
  • Publication number: 20170156747
    Abstract: Devices and methods for increasing rotational torque during end effector articulation are provided. In general, a surgical device can include an end effector configured to articulate. The end effector can be configured to move between different angular orientations relative to an elongate shaft of the device having the end effector at a distal end thereof. The elongate shaft and the end effector can be configured to be rotated relative to a handle portion of the device. The device can include at least one friction member configured to provide increased resistance to rotation of the elongate shaft and the end effector when the end effector is articulated as compared to when the end effector is not articulated. The at least one friction member can thus be configured to increase rotational torque when the end effector is articulated as compared to when the end effector is not articulated.
    Type: Application
    Filed: December 4, 2015
    Publication date: June 8, 2017
    Inventors: Barry C. Worrell, Jason R. Lesko
  • Publication number: 20170135749
    Abstract: Methods and devices are provided for retracting a cutting assembly in the event of a failure on a motorized electrosurgical device. For example, a surgical device is provided with a handle that has an elongate shaft assembly with first and second jaws for engaging tissue. A cutting assembly is included in the surgical device that cuts tissue engaged between the first and second jaws. The surgical device also includes a drive shaft that extends from the handle through the elongate shaft and moves the cutting assembly relative to the first and second jaws, and a motorized gear assembly that causes movement of the drive shaft. In an exemplary embodiment, the elongate shaft assembly is detachable from the handle such that, when detached, the drive shaft can be manually retracted relative to the elongate shaft to retract the cutting assembly from to the first and second jaws.
    Type: Application
    Filed: November 13, 2015
    Publication date: May 18, 2017
    Inventors: David J. Cagle, Catherine Corbett, Kevin M. Fiebig, Richard Leimbach, Jason R. Lesko, Rudolph Nobis, Geoffrey S. Strobl, Brett Swensgard, Aaron Voegele
  • Publication number: 20170135748
    Abstract: Methods and devices are provided for retracting a cutting assembly in the event of a failure on a motorized electrosurgical device. As an example, a surgical device is provided that includes a handle portion with an elongate shaft extending distally that has first and second jaws configured to engage tissue therebetween. A cutting assembly cuts tissue engaged between the first and second jaws. A drive shaft extends from the handle through the elongate shaft and moves the cutting assembly. A motorized gear assembly moves the drive shaft. The drive shaft is movable between a first position in which the drive shaft is engaged with the motorized gear assembly such that actuation of the motorized gear assembly drives the drive shaft, and a second position in which the drive shaft is disengaged from the motorized gear assembly such that the drive shaft can move independent of the gear assembly.
    Type: Application
    Filed: November 13, 2015
    Publication date: May 18, 2017
    Inventors: Jeffrey L. Aldridge, Jason R. Lesko, Geoffrey S. Strobl
  • Patent number: 9585655
    Abstract: An apparatus comprises a body, a shaft assembly, an end effector assembly, and a drive assembly. The body may include a handpiece with an integral motor. The shaft assembly may include two pairs of concentric shafts. The end effector assembly may include arms that selectively grasp and release a suturing needle. The drive assembly is operable to drive the end effector assembly via the shaft assembly. The drive assembly is operable to convert a single rotary input into at least two rotary outputs. In some versions, the drive assembly comprises a plurality of shaft assemblies that include an input shaft, a first output shaft, a second output shaft, and a third output shaft. The drive assembly is operable to selectively rotate and hold the shaft assemblies in accordance with a predetermined sequence, such as to perform tissue suturing through a trocar in a minimally invasive surgical procedure.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: March 7, 2017
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: James A. Woodard, Jr., Aaron J. Brickner, Jason R. Lesko
  • Publication number: 20170042605
    Abstract: An apparatus comprises an end effector, an elongate shaft, and a handle assembly. The shaft includes an articulation section that is operable to deflect the end effector away from the longitudinal axis of the shaft. The handle assembly includes a rotary member positioned within an intermediate section of the handle assembly. The rotary member is rotatable about an axis that is parallel to the longitudinal axis of the shaft. The rotary member is operable to control the articulation section of the shaft. The rotary member may include opposing thread sections that simultaneously drive lead screws in opposite longitudinal directions, to thereby control the articulation section. The shaft may be rotatable relative to the handle assembly, and the apparatus may selectively lock or resist such rotation based on the articulation state of the articulation section.
    Type: Application
    Filed: October 27, 2016
    Publication date: February 16, 2017
    Inventors: Barry C. Worrell, Jason R. Lesko
  • Patent number: 9545253
    Abstract: An apparatus comprises an end effector, an elongate shaft, and a handle assembly. The shaft includes an articulation section that is operable to deflect the end effector away from the longitudinal axis of the shaft. The handle assembly includes a rotary member positioned within an intermediate section of the handle assembly. The rotary member is rotatable about an axis that is parallel to the longitudinal axis of the shaft. The rotary member is operable to control the articulation section of the shaft. The rotary member may include opposing thread sections that simultaneously drive lead screws in opposite longitudinal directions, to thereby control the articulation section. The shaft may be rotatable relative to the handle assembly, and the apparatus may selectively lock or resist such rotation based on the articulation state of the articulation section.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: January 17, 2017
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Barry C. Worrell, Jason R. Lesko
  • Publication number: 20160296270
    Abstract: Devices and methods are described herein for providing enhanced power to a surgical device from a secondary power supply that operates in parallel to a primary power supply that provides power for therapeutic functions of the device. The secondary power supply can provide additional power for the therapeutic functions of the device, and/or it can provide power for non-therapeutic functions of the device such as sensors, displays, motors, etc. Subsystems powered by the primary power supply can be wholly isolated from subsystems powered by the secondary power supply, thus helping to prevent faults in one subsystem from affecting the other and providing secondary power without the need to modify the subsystems powered by the primary power supply. According to any of the systems described herein, additional power can thus be supplied to the device without affecting the structure and/or function of existing subsystems configured to supply primary power.
    Type: Application
    Filed: April 10, 2015
    Publication date: October 13, 2016
    Inventors: Geoffrey S. Strobl, Mark A. Davison, Carl J. Draginoff, Jr., Patrick M. Schleitweiler, Eric Johnson, Jason R. Lesko
  • Publication number: 20160278848
    Abstract: A surgical instrument that includes an end effector and a trigger that is actuatable between a first position and a second position. An actuation drive is movable between an unactuated position and an actuated position in response to actuation of the trigger. A toggle assembly is transitionable between a folded configuration and an expanded configuration, wherein the toggle assembly is configured to motivate the actuation drive to effectuate a movement in the end effector in the folded configuration. The toggle assembly being configured to bypass the actuation drive when in the expanded configuration. A resetting member is operable to return the toggle assembly to the folded configuration.
    Type: Application
    Filed: March 24, 2015
    Publication date: September 29, 2016
    Inventors: Chad P. Boudreaux, Scott R. Bingham, Benjamin D. Dickerson, Jason R. Lesko
  • Patent number: 9451946
    Abstract: A suture needle driving instrument comprises a shaft assembly, an end effector, and a grasping actuation assembly. The end effector is located at the distal end of the shaft assembly and includes a pair of grasping arms. Each grasping arm comprises a respective pair of jaws. Each pair of jaws is operable to cooperate to grasp and release a suture needle. The grasping actuation assembly is operable to drive one jaw of each pair in one direction while simultaneously driving the other jaw of the pair in an opposite direction, to selectively grasp or release the suture needle. The shaft assembly includes two pairs of parallel concentric shafts, which form part of the actuation assembly. Each shaft pair is operable to drive a respective internal drive shaft having separate threaded regions with opposing pitch. The instrument may be used through a trocar during minimally invasive surgery.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: September 27, 2016
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: James A. Woodard, Jr., Aaron J. Brickner, Jason R. Lesko, William J. White, David T. Martin
  • Publication number: 20160270807
    Abstract: A surgical end effector is provided having upper and lower jaws pivotally coupled to one another by at least one connecting member that is configured to allow a gap between the jaws to be set at a desired height. In one embodiment, the connecting member can be pivotably coupled to the upper jaw and fixed within a slot in the lower jaw. The connecting member can be fixed within the slot in one of multiple positions so as to position first and second tissue contacting surfaces of the upper and lower jaws at a predetermined distance from one another when the first and second jaws are in the closed position. The connecting member can include a pin formed thereon that extends into a bore formed in the upper jaw. Alternatively, the upper jaw can include a pin formed thereon that extends into a bore formed in the connecting member.
    Type: Application
    Filed: March 16, 2015
    Publication date: September 22, 2016
    Inventors: Barry Christian Worrell, Kris Kallenberger, Randolph Charles Stewart, Jason R. Lesko, William Doug Shaw
  • Publication number: 20160270809
    Abstract: Various exemplary methods and devices for actuating surgical instruments are provided. In general, a surgical device can include one or more actuation shafts configured to facilitate actuation of the device. In an exemplary embodiment, the device can include four actuation shafts, two actuation shafts to facilitate articulation of the device, one actuation shaft to facilitate opening and closing of jaws at a distal end of the device, and one actuation shaft to facilitate moving a cutting element of the device. In an exemplary embodiment, each of the one or more actuation shafts can include a distal elongate member and a proximal elongate member having a proximal end attached to a distal end of the distal elongate member. The proximal elongate member can be rigid, and the distal elongate member can be flexible.
    Type: Application
    Filed: March 16, 2015
    Publication date: September 22, 2016
    Inventors: Chad P. Boudreaux, Jason R. Lesko, Eric N. Johnson, Kevin M. Fiebig, Carl J. Draginoff, JR., Scott B. Killinger, Kris E. Kallenberger, Barry C. Worrell
  • Publication number: 20160015383
    Abstract: A surgical needle includes a pair of ends, a mid-region extending between the ends, and at least one grasping feature configured for grasping by a suturing instrument. An end of a suture is secured to the mid-region of the needle in a manner such that the end of the suture defines an oblique angle with at least part of the centerline defined by the mid-region of the needle. The end of the suture may be disposed in a hollow portion of the needle. The grasping feature may include a notch such as a scallop. The suture may be pivotally coupled with the needle via a ball or pin. The needle may have one or more sharp points. The sharp point may include three converging cutting edges, at least two planar surfaces bounded by the three cutting edges, and a rounded surface bounded by two of the three cutting edges.
    Type: Application
    Filed: July 31, 2015
    Publication date: January 21, 2016
    Inventors: James A. Woodard, JR., Michael V. Sherrill, Jason R. Lesko, David T. Martin, Katherine J. Schmid, Michael J. Miller, Gary W. Knight, Richard F. Schwemberger, Atul M. Godbole
  • Patent number: 9168037
    Abstract: An apparatus comprises a shaft, a needle throwing arm, and a needle receiving arm. The arms are movable asynchronously along planes that are substantially parallel to a longitudinal axis defined by the shaft. The arms selectively engage a surgical needle, such that the throwing arm may pass the surgical needle through tissue for receipt by the receiving arm, and the receiving arm may then pass the surgical needle back to the throwing arm for additional stitching. The arms may pivot about a common pivot. Such versions may include a single actuator for both arms or separate actuators for the arms. The arms may also pivot about their own respective axles, which may facilitate a forward reset motion for a needle, allowing the needle to continue travelling along a circular path in a single direction to create several stitches. The apparatus may also convert reciprocating movement of actuators into rotational motion.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: October 27, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: James A. Woodard, Jr., Frederick E. Shelton, IV, Jason R. Lesko, Chester O. Baxter, III
  • Patent number: 9125646
    Abstract: A surgical needle includes a pair of ends, a mid-region extending between the ends, and at least one grasping feature configured for grasping by a suturing instrument. An end of a suture is secured to the mid-region of the needle in a manner such that the end of the suture defines an oblique angle with at least part of the centerline defined by the mid-region of the needle. The end of the suture may be disposed in a hollow portion of the needle. The grasping feature may include a notch such as a scallop. The suture may be pivotally coupled with the needle via a ball or pin. The needle may have one or more sharp points. The sharp point may include three converging cutting edges, at least two planar surfaces bounded by the three cutting edges, and a rounded surface bounded by two of the three cutting edges.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: September 8, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: James A. Woodard, Jr., Michael V. Sherrill, Jason R. Lesko, David T. Martin, Katherine J. Schmid, Michael J. Miller, Gary W. Knight, Richard F. Schwemberger, Atul M. Godbole
  • Patent number: 9089327
    Abstract: An apparatus comprises an end effector, an elongate shaft, and a handle assembly. The end effector is operable to grasp tissue. The elongate shaft extends between the end effector and the handle assembly. The handle assembly comprises a body portion, a trigger, and a trigger return lever. The trigger is movable relative to the body portion from a home position to an actuated position, and is thereby operable to control the end effector to selectively grasp tissue. The trigger includes a cam feature. The trigger return lever is positioned to engage the cam feature of the trigger. The trigger return lever is configured to bias the trigger toward the home position during at least part of a range of motion of the trigger from the home position to the actuated position.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: July 28, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Barry C. Worrell, Jason R. Lesko, Bingshi Wang, Carl J. Draginoff, Jr.
  • Publication number: 20150142020
    Abstract: A suture needle driving instrument comprises a shaft and an end effector. The end effector is located at the distal end of the shaft and includes a pair of needle grasping arms. Each grasping arm extends along a respective arm axis. The grasping arms are operable to drive a suture needle along a rotational path about an axis, such as one of the arm axes, that is offset from the central longitudinal axis of the shaft. The rotational path may be perpendicular to the axis of the shaft. A needle driven by the end effector may have an arc radius that is greater than the radius of the shaft. At least one of the needle grasping arms may include a dogleg feature positioning a distal portion of the grasping arm outside the radius of the shaft. The instrument may be used through a trocar during minimally invasive surgery.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: James A. Woodard, JR., Jason R. Lesko, Shawn C. Snyder, David T. Martin
  • Patent number: 8906043
    Abstract: A suture needle driving instrument comprises a shaft and an end effector. The end effector is located at the distal end of the shaft and includes a pair of needle grasping arms. Each grasping arm extends along a respective arm axis. The grasping arms are operable to drive a suture needle along a rotational path about an axis, such as one of the arm axes, that is offset from the central longitudinal axis of the shaft. The rotational path may be perpendicular to the axis of the shaft. A needle driven by the end effector may have an arc radius that is greater than the radius of the shaft. At least one of the needle grasping arms may include a dogleg feature positioning a distal portion of the grasping arm outside the radius of the shaft. The instrument may be used through a trocar during minimally invasive surgery.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: December 9, 2014
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: James A. Woodard, Jr., Jason R. Lesko, Shawn C. Snyder, David T. Martin
  • Publication number: 20140158747
    Abstract: An apparatus for stapling tissue includes a head assembly, a handle actuator in communication with the head assembly, and a staple cartridge. The head assembly is operable to drive a plurality of staples in response to actuating the handle actuator. The staple cartridge is in communication with the head assembly. The staple cartridge comprises a first annular ring of apertures and a second ring of apertures. The first annular ring of apertures includes apertures having a different size than the second annular ring of apertures, such that the apertures accommodate staples having different crown lengths. The staples may include pledgets that are configured to provide a greater staple footprint.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 12, 2014
    Applicant: ETHICON ENDO-SURGERY, INC.
    Inventors: John P. Measamer, Johnny H. Alexander, III, Christopher C. Miller, Jason R. Lesko, James S. Merritt, Tamara S. Vetro Widenhouse, Frederick E. Shelton, IV
  • Patent number: 8702732
    Abstract: A suture needle driving instrument comprises a shaft, an end effector, and a grasping actuation assembly. The end effector is located at the distal end of the shaft and includes a pair of grasping arms. Each grasping arm comprises a respective pair of jaws. Each pair of jaws is operable to cooperate to grasp and release a suture needle. The grasping actuation assembly is operable to drive one jaw of each pair in one direction while simultaneously driving the other jaw of the pair in an opposite direction, to selectively grasp or release the suture needle. The actuation assembly may include a drive shaft having separate threaded regions with opposing pitch. The end effector is further operable to pass the needle from one arm to the other arm during a suturing procedure. The instrument may be used through a trocar during minimally invasive surgery.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: April 22, 2014
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: James A. Woodard, Jr., Jason R. Lesko