Patents by Inventor Jason R. Lesko

Jason R. Lesko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130282031
    Abstract: An apparatus comprises a body, a shaft assembly, an end effector assembly, and a drive assembly. The body may include a handpiece with an integral motor. The shaft assembly may include two pairs of concentric shafts. The end effector assembly may include arms that selectively grasp and release a suturing needle. The drive assembly is operable to drive the end effector assembly via the shaft assembly. The drive assembly is operable to convert a single rotary input into at least two rotary outputs. In some versions, the drive assembly comprises a plurality of shaft assemblies that include an input shaft, a first output shaft, a second output shaft, and a third output shaft. The drive assembly is operable to selectively rotate and hold the shaft assemblies in accordance with a predetermined sequence, such as to perform tissue suturing through a trocar in a minimally invasive surgical procedure.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Inventors: James A. Woodard, JR., Aaron J. Brickner, Jason R. Lesko
  • Publication number: 20130282027
    Abstract: A suture needle driving instrument comprises a shaft assembly, an end effector, and a grasping actuation assembly. The end effector is located at the distal end of the shaft assembly and includes a pair of grasping arms. Each grasping arm comprises a respective pair of jaws. Each pair of jaws is operable to cooperate to grasp and release a suture needle. The grasping actuation assembly is operable to drive one jaw of each pair in one direction while simultaneously driving the other jaw of the pair in an opposite direction, to selectively grasp or release the suture needle. The shaft assembly includes two pairs of parallel concentric shafts, which form part of the actuation assembly. Each shaft pair is operable to drive a respective internal drive shaft having separate threaded regions with opposing pitch. The instrument may be used through a trocar during minimally invasive surgery.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Inventors: James A. Woodard, JR., Aaron J. Brickner, Jason R. Lesko, William J. White, David T. Martin
  • Publication number: 20130245643
    Abstract: A suture needle driving instrument comprises a shaft and an end effector. The end effector is located at the distal end of the shaft and includes a pair of grasping arms. Each grasping arm comprises a respective pair of jaws. Each pair of jaws is operable to cooperate to grasp and release a suture needle. Each jaw has a needle grasping member operable to align a suture needle along a predetermined arc path. The end effector is further operable to pass the needle from one arm to the other arm during a suturing procedure. The instrument may be used through a trocar during minimally invasive surgery.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Inventors: James A. Woodard, JR., Aaron J. Brickner, Jason R. Lesko
  • Publication number: 20120150199
    Abstract: A suture needle driving instrument comprises a shaft, an end effector, and a grasping actuation assembly. The end effector is located at the distal end of the shaft and includes a pair of grasping arms. Each grasping arm comprises a respective pair of jaws. Each pair of jaws is operable to cooperate to grasp and release a suture needle. The grasping actuation assembly is operable to drive one jaw of each pair in one direction while simultaneously driving the other jaw of the pair in an opposite direction, to selectively grasp or release the suture needle. The actuation assembly may include a drive shaft having separate threaded regions with opposing pitch. The end effector is further operable to pass the needle from one arm to the other arm during a suturing procedure. The instrument may be used through a trocar during minimally invasive surgery.
    Type: Application
    Filed: November 14, 2011
    Publication date: June 14, 2012
    Inventors: James A. Woodard, JR., Jason R. Lesko
  • Publication number: 20120143223
    Abstract: A suture needle driving instrument comprises a shaft and an end effector. The end effector is located at the distal end of the shaft and includes a pair of needle grasping arms. Each grasping arm extends along a respective arm axis. The grasping arms are operable to drive a suture needle along a rotational path about an axis, such as one of the arm axes, that is offset from the central longitudinal axis of the shaft. The rotational path may be perpendicular to the axis of the shaft. A needle driven by the end effector may have an arc radius that is greater than the radius of the shaft. At least one of the needle grasping arms may include a dogleg feature positioning a distal portion of the grasping arm outside the radius of the shaft. The instrument may be used through a trocar during minimally invasive surgery.
    Type: Application
    Filed: November 14, 2011
    Publication date: June 7, 2012
    Inventors: James A. Woodard, JR., Jason R. Lesko, Shawn C. Snyder, David T. Martin
  • Publication number: 20120123471
    Abstract: A surgical needle includes a pair of ends, a mid-region extending between the ends, and at least one grasping feature configured for grasping by a suturing instrument. An end of a suture is secured to the mid-region of the needle in a manner such that the end of the suture defines an oblique angle with at least part of the centerline defined by the mid-region of the needle. The end of the suture may be disposed in a hollow portion of the needle. The grasping feature may include a notch such as a scallop. The suture may be pivotally coupled with the needle via a ball or pin. The needle may have one or more sharp points. The sharp point may include three converging cutting edges, at least two planar surfaces bounded by the three cutting edges, and a rounded surface bounded by two of the three cutting edges.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 17, 2012
    Inventors: James A. Woodard, JR., Michael V. Sherrill, Jason R. Lesko, David T. Martin, Katherine J. Schmid, Michael J. Miller, Gary W. Knight, Richard F. Schwemberger, Atul M. Godbole
  • Publication number: 20120078243
    Abstract: An electrosurgical device includes a body, an end effector, a cutting member, and a shaft. The end effector comprises a pair of jaws and at least one electrode that is operable to deliver RF energy to tissue clamped between the jaws. The cutting member is operable to cut tissue clamped between the jaws. The shaft includes an articulation section that is operable to selectively position the end effector at non-parallel positions relative to the longitudinal axis of the shaft. The body includes a controller operable to selectively actuate the articulation section. The controller may include a rotary knob, a pivoting knob, or a pivoting fin, among other things. An electrical coupling may contact a conductive moving member along at least two axes. A resiliently biased lever may assist a trigger in returning from an actuated position to a home position.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 29, 2012
    Inventors: Barry C. Worrell, Zhifan F. Huang, Jason R. Lesko, Matthew C. Miller, Geoffrey S. Strobl, Gregory A. Trees, Charles S. Black, William E. Clem, Emron J. Henry, Kevin M. Montgomery
  • Publication number: 20110313433
    Abstract: An apparatus comprises a shaft, a needle throwing arm, and a needle receiving arm. The arms are movable asynchronously along planes that are substantially parallel to a longitudinal axis defined by the shaft. The arms selectively engage a surgical needle, such that the throwing arm may pass the surgical needle through tissue for receipt by the receiving arm, and the receiving arm may then pass the surgical needle back to the throwing arm for additional stitching. The arms may pivot about a common pivot. Such versions may include a single actuator for both arms or separate actuators for the arms. The arms may also pivot about their own respective axles, which may facilitate a forward reset motion for a needle, allowing the needle to continue travelling along a circular path in a single direction to create several stitches. The apparatus may also convert reciprocating movement of actuators into rotational motion.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 22, 2011
    Inventors: James A. Woodard, JR., Frederick E. Shelton, IV, Jason R. Lesko, Chester O. Baxter, III
  • Publication number: 20110028794
    Abstract: Methods and devices are provided for providing surgical access into a body cavity. In one embodiment, a surgical access device is provided that includes a housing having multiple access ports for receiving surgical instruments, and a retractor removably coupled to the housing and having a working channel configured to extend into a body cavity. With the housing and retractor mated together, a portion of the housing through which instruments can be inserted can rotate relative to the retractor. The retractor can be positioned in tissue using an inserter tool configured to seat the retractor and to automatically release the retractor into position within the tissue. The retractor can be removed from the tissue using a cord coupled to the retractor.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 3, 2011
    Applicant: Ethicon Endo-Surgery, Inc.
    Inventors: Christopher W. Widenhouse, Jason R. Lesko, Michael V. Sherrill, Tamara S. V. Widenhouse
  • Patent number: D576775
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: September 9, 2008
    Assignee: Crown Equipment Corporation
    Inventors: Juergen Buchmann, Dean E. Davis, David W. Fox, Michael P. Gallagher, Eric J. Hanson, Jason R. Lesko, Jeffrey T. Mauch