Patents by Inventor Javier A. Delacruz

Javier A. Delacruz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10991804
    Abstract: A microelectronic unit may include an epitaxial silicon layer having a source and a drain, a buried oxide layer beneath the epitaxial silicon layer, an ohmic contact extending through the buried oxide layer, a dielectric layer beneath the buried oxide layer, and a conductive element extending through the dielectric layer. The source and the drain may be doped portions of the epitaxial silicon layer. The ohmic contact may be coupled to a lower surface of one of the source or the drain. The conductive element may be coupled to a lower surface of the ohmic contact. A portion of the conductive element may be exposed at the second dielectric surface of the dielectric layer. The second dielectric surface may be directly bonded to an external component to form a microelectronic assembly.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: April 27, 2021
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, David Edward Fisch
  • Publication number: 20210118864
    Abstract: The present disclosure provides for a stacked memory combining RAM and one or more layers of NVM, such as NAND. For example, a first layer of RAM, such as DRAM, is coupled to multiple consecutive layers of NAND using direct bonding interconnect (DBI®). Serialization and overhead that exists in periphery of the NVM may be stripped to manage the data stored therein. The resulting connections between the RAM and the NVM are high bandwidth, high pincount interconnects. Interconnects between each of the one or more layers of NVM are also very dense.
    Type: Application
    Filed: October 14, 2020
    Publication date: April 22, 2021
    Inventors: Javier A. Delacruz, Pearl Po-Yee Cheng, David Edward Fisch
  • Patent number: 10978348
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: April 13, 2021
    Assignee: Xcelsis Corporation
    Inventors: Javier DeLaCruz, Steven L. Teig, Ilyas Mohammed
  • Publication number: 20210104436
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Application
    Filed: November 19, 2020
    Publication date: April 8, 2021
    Inventors: Javier DeLaCruz, Steven L. Teig, Ilyas Mohammed, Eric M. Nequist
  • Patent number: 10970627
    Abstract: Some embodiments provide a three-dimensional (3D) circuit structure that has two or more vertically stacked bonded layers with a machine-trained network on at least one bonded layer. As described above, each bonded layer can be an IC die or an IC wafer in some embodiments with different embodiments encompassing different combinations of wafers and dies for the different bonded layers. The machine-trained network in some embodiments includes several stages of machine-trained processing nodes with routing fabric that supplies the outputs of earlier stage nodes to drive the inputs of later stage nodes. In some embodiments, the machine-trained network is a neural network and the processing nodes are neurons of the neural network. In some embodiments, one or more parameters associated with each processing node (e.g., each neuron) is defined through machine-trained processes that define the values of these parameters in order to allow the machine-trained network (e.g.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: April 6, 2021
    Assignee: Xcelsis Corporation
    Inventors: Steven L. Teig, Kenneth Duong, Javier DeLaCruz
  • Publication number: 20210098412
    Abstract: A bonded structure can comprise a first element and a second element. The first element has a first dielectric layer including a first bonding surface and at least one first side surface of the first element. The second element has a second dielectric layer including a second bonding surface and at least one second side surface of the second element. The second bonding surface of the second element is directly bonded to the first bonding surface of the first element without an adhesive.
    Type: Application
    Filed: May 14, 2020
    Publication date: April 1, 2021
    Inventors: Belgacem Haba, Laura Wills Mirkarimi, Javier A. DeLaCruz, Rajesh Katkar, Cyprian Emeka Uzoh, Guilian Gao, Thomas Workman
  • Patent number: 10950547
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: March 16, 2021
    Assignee: Xcelsis Corporation
    Inventors: Ilyas Mohammed, Steven L. Teig, Javier DeLaCruz
  • Patent number: 10923413
    Abstract: Hard IP blocks, such as SerDes chips, are designed with keepout zones beneath the surface interconnects, the keepout zones being spaces within the chip where there is no circuitry. Connections can be formed between surface interconnects on an under surface of the SerDes chip that faces the host die, and surface interconnects on an upper surface of the SerDes chip that interfaces without external devices. Accordingly, redistribution layers routing around an outer periphery of the SerDes chip are no longer needed, and the resistive capacitive load remains low so as not to adversely impact transmitted signals.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: February 16, 2021
    Assignee: Xcelsis Corporation
    Inventor: Javier A. Delacruz
  • Patent number: 10923408
    Abstract: An integrated device package is disclosed. The integrated device package can include an integrated device die, an element, a cavity, and an electrical interconnect. The element can have an antenna structure. The element can be attached to a surface of the integrated device. The cavity can be disposed between the integrated device die and the antenna structure. The electrical interconnect can connect the integrated device die and the antenna structure.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: February 16, 2021
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Shaowu Huang, Javier A. DeLaCruz, Liang Wang, Rajesh Katkar, Belgacem Haba
  • Patent number: 10910344
    Abstract: An integrated circuit and a method for designing an IC wherein the base or host chip is bonded to smaller chiplets via DBI technology. The bonding of chip to chiplet creates an uneven or multi-level surface of the overall chip requiring a releveling for future bonding. The uneven surface is built up with plating of bumps and subsequently releveled with various methods including planarization.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: February 2, 2021
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, Belgacem Haba, Cyprian Emeka Uzoh, Rajesh Katkar, Ilyas Mohammed
  • Patent number: 10892252
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: January 12, 2021
    Assignee: XCELSIS CORPORATION
    Inventors: Eric M. Nequist, Steven L. Teig, Javier DeLaCruz, Ilyas Mohammed, Laura Mirkarimi
  • Patent number: 10886177
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: January 5, 2021
    Assignee: XCELSIS CORPORATION
    Inventors: Javier DeLaCruz, Steven L. Teig, Ilyas Mohammed
  • Patent number: 10879210
    Abstract: A bonded structure can include a first element having a first interface feature and a second element having a second interface feature. The first interface feature can be bonded to the second interface feature to define an interface structure. A conductive trace can be disposed in or on the second element. A bond pad can be provided at an upper surface of the first element and in electrical communication with the conductive trace. An integrated device can be coupled to or formed with the first element or the second element.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: December 29, 2020
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Paul M. Enquist, Liang Wang, Rajesh Katkar, Javier A. DeLaCruz, Arkalgud R. Sitaram
  • Patent number: 10879207
    Abstract: A bonded structure can include a first element having a first conductive interface feature and a second element having a second conductive interface feature. An integrated device can be coupled to or formed with the first element or the second element. The first conductive interface feature can be directly bonded to the second conductive interface feature to define an interface structure. The interface structure can be disposed about the integrated device in an at least partially annular profile to connect the first and second elements.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: December 29, 2020
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Liang Wang, Rajesh Katkar, Javier A. DeLaCruz, Arkalgud R. Sitaram
  • Publication number: 20200403006
    Abstract: The present disclosure provides chip architectures for FPGAs and other routing implementations that provide for increased memory with high bandwidth, in a reduced size, accessible with reduced latency. Such architectures include a first layer in advanced node and a second layer in legacy node. The first layer includes an active die, active circuitry, and a configurable memory, and the second layer includes a passive die with wiring. The second layer is bonded to the first layer such that the wiring of the second layer interconnects with the active circuitry of the first layer and extends an amount of wiring possible in the first layer.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 24, 2020
    Inventors: Javier A. Delacruz, Don Draper, Jung Ko, Steven L. Teig
  • Publication number: 20200402913
    Abstract: Techniques are disclosed herein for connecting multiple chips using an interconnect device. In some configurations, one or more interconnect areas on a chip can be located adjacent to each other such that at least a portion of an edge of a first interconnect area is located adjacent to an edge of a second interconnect area. For example, an interconnect area can be located at a corner of a chip such that one or more edges of the interconnect area lines up with one or more edges of an interconnect area of another chip. The chip including at least one interconnect area can also be positioned and directly bonded to the interconnect device using other layouts, such as but not limited to a pinwheel layout. In some configurations more than one interconnect area can be included on a chip.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 24, 2020
    Inventors: Javier A. Delacruz, Belgacem Haba
  • Publication number: 20200387471
    Abstract: The technology relates to a system on chip (SoC). The SoC may include a plurality of network layers which may assist electrical communications either horizontally or vertically among components from different device layers. In one embodiment, a system on chip (SoC) includes a plurality of network layers, each network layer including one or more routers, and more than one device layers, each of the plurality of network layers respectively bonded to one of the device layers. In another embodiment, a method for forming a system on chip (SoC) includes forming a plurality of network layers in an interconnect, wherein each network layer is bonded to an active surface of a respective device layer in a plurality of device layer.
    Type: Application
    Filed: April 7, 2020
    Publication date: December 10, 2020
    Applicant: Invensas Corporation
    Inventors: Javier A. Delacruz, Belgacem Haba, Rajesh Katkar
  • Publication number: 20200388592
    Abstract: The technology relates to a system on chip (SoC). The SoC may include a network on layer including one or more routers and an application specific integrated circuit (ASIC) layer bonded to the network layer, the ASIC layer including one or more components. In some instances, the network layer and the ASIC layer each include an active surface and a second surface opposite the active surface. The active surface of the ASIC layer and the second surface of the network may each include one or more contacts, and the network layer may be bonded to the ASIC layer via bonds formed between the one or more contacts on the second surface of the network layer and the one or more contacts on the active surface of the ASIC layer.
    Type: Application
    Filed: November 8, 2019
    Publication date: December 10, 2020
    Applicant: Invensas Corporation
    Inventors: Javier A. Delacruz, Belgacem Haba
  • Publication number: 20200371154
    Abstract: A bonded structure is disclosed. The bonded structure can include a first semiconductor element having a first front side and a first back side opposite the first front side. The bonded structure can include a second semiconductor element having a second front side and a second back side opposite the second front side, the first front side of the first semiconductor element directly bonded to the second front side of the second semiconductor element along a bond interface without an adhesive.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 26, 2020
    Inventors: Javier A. DeLaCruz, Belgacem Haba, Guy Regev
  • Publication number: 20200356714
    Abstract: An integrated circuit and a method for designing an IC where the smallest repeatable block is selected, designed and tested to span across multiple die levels. The block is configured to be timing closed at the block level thereby reducing the overall complexity of the design and avoiding the limiting effects of the constrained EDA tools. The block may subsequently be repeated on multiple die to be stacked in an IC.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 12, 2020
    Applicant: Xcelsis Corporation
    Inventors: Javier A. DELACRUZ, Eric NEQUIST, Jung KO, Kenneth DUONG