Patents by Inventor Jay F. Kunzler

Jay F. Kunzler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7022749
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, corneal inlays and contact lenses made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based siloxane macromonomers or the copolymerization of one or more aromatic-based siloxane macromonomers with one or more non-siloxy aromatic-based monomers, non-aromatic-based hydrophobic monomers or non-aromatic-based hydrophilic monomers.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: April 4, 2006
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye
  • Patent number: 7009024
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, corneal inlays and contact lenses made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based siloxane macromonomers or the copolymerization of one or more aromatic-based siloxane macromonomers with one or more non-siloxy aromatic-based monomers, non-aromatic-based hydrophobic monomers or non-aromatic-based hydrophilic monomers.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: March 7, 2006
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye
  • Patent number: 7009023
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, corneal inlays and contact lenses made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based siloxane macromonomers or the copolymerization of one or more aromatic-based siloxane macromonomers with one or more non-siloxy aromatic-based monomers, non-aromatic-based hydrophobic monomers or non-aromatic-based hydrophilic monomers.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: March 7, 2006
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye
  • Patent number: 7005494
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, corneal inlays and contact lenses made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based siloxane macromonomers or the copolymerization of one or more aromatic-based siloxane macromonomers with one or more non-siloxy aromatic-based monomers, non-aromatic-based hydrophobic monomers or non-aromatic-based hydrophilic monomers.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: February 28, 2006
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye
  • Patent number: 6992162
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, corneal inlays and contact lenses made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based siloxane macromonomers or the copolymerization of one or more aromatic-based siloxane macromonomers with one or more non-siloxy aromatic-based monomers, non-aromatic-based hydrophobic monomers or non-aromatic-based hydrophilic monomers.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: January 31, 2006
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye
  • Patent number: 6989430
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, corneal inlays and contact lenses made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based siloxane macromonomers or the copolymerization of one or more aromatic-based siloxane macromonomers with one or more non-siloxy aromatic-based monomers, non-aromatic-based hydrophobic monomers or non-aromatic-based hydrophilic monomers.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: January 24, 2006
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph C. Salamone, Jay F. Kunzler
  • Patent number: 6958169
    Abstract: A method for improving the wettability of a medical device involves: (a) providing a medical device formed from a monomer mixture comprising a hydrophilic device-forming monomer including a copolymerizable group and an electron donating moiety, and a second device-forming monomer including a copolymerizable group and a reactive functional group; and (b) contacting a surface of the medical device with a wetting agent including a proton donating moiety reactive with the functional group provided by the second lens-forming monomer and that complexes with the electron donating moiety provided by the hydrophilic lens-forming monomer.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: October 25, 2005
    Assignee: Bausch & Lomb Incorporated
    Inventors: Jay F. Künzler, Joseph A. McGee, Joseph C. Salamone, David E. Seelye
  • Patent number: 6921802
    Abstract: A method for reducing the modulus of polymer silicone hydrogel compositions by employing monomeric polysiloxanes endcapped with trimethylsilyl to reduce the crosslinking density of the hydrogel. The synthesis consists of a single vessel acid catalyzed ring opening polymerization and may be employed to produce copolymers useful as hydrogel contact lens materials.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: July 26, 2005
    Assignee: Bausch & Lomb, Inc.
    Inventors: Jay F. Künzler, Arthur W. Martin
  • Patent number: 6908978
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, contact lenses and corneal inlays made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more siloxysilane monomers or the copolymerization of one or more siloxysilane monomers with one or more aromatic or non-aromatic non-siloxy monomers, hydrophobic monomers or hydrophilic monomers.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: June 21, 2005
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye
  • Patent number: 6906162
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, corneal inlays and contact lenses made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based siloxane macromonomers or the copolymerization of one or more aromatic-based siloxane macromonomers with one or more non-siloxy aromatic-based monomers, non-aromatic-based hydrophobic monomers or non-aromatic-based hydrophilic monomers.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: June 14, 2005
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye
  • Patent number: 6891010
    Abstract: Vinyl carbonate endcapped polysiloxanes containing a fluorinated side chain are useful as biomaterials, especially hydrogel biomaterials, including contact lens materials.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: May 10, 2005
    Assignee: Bausch & Lomb Incorporated
    Inventors: Jay F. Kunzler, David E. Seelye
  • Patent number: 6881809
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, contact lenses and corneal inlays made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based silyl monomers or the copolymerization of one or more aromatic-based silyl monomers with one or more aromatic or non-aromatic non-siloxy-based monomers, hydrophobic monomers or hydrophilic monomers.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: April 19, 2005
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye, David P. Vanderbilt
  • Patent number: 6881808
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, corneal inlays and contact lenses made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based siloxane macromonomers or the copolymerization of one or more aromatic-based siloxane macromonomers with one or more non-siloxy aromatic-based monomers, non-aromatic-based hydrophobic monomers or non-aromatic-based hydrophilic monomers.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: April 19, 2005
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye
  • Patent number: 6852793
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses and corneal inlays made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more copolymers with one or more hydrophilic monomers and optionally one or more aromatic-based monomers, hydrophobic monomers or a combination thereof.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: February 8, 2005
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye
  • Patent number: 6846897
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, contact lenses and corneal inlays made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based silyl monomers or the copolymerization of one or more aromatic-based silyl monomers with one or more aromatic or non-aromatic non-siloxy-based monomers, hydrophobic monomers or hydrophilic monomers.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: January 25, 2005
    Assignee: Bausch and Lomb, Inc.
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye, David P. Vanderbilt
  • Publication number: 20040253293
    Abstract: Chemical erosion controlled release drug delivery systems are provided that allow controlled release of sustained concentrations of therapeutic agents within a treated area for a prolonged period of time. The favorable solubility characteristics of the chemical erosion controlled release drug delivery systems are controlled through the hydrophobicity and load level of pharmaceutically active agent or drug. Such controlled solubility characteristics allow for manipulation of the drug release rates depending on the particular therapeutic use and the particular needs of the patient.
    Type: Application
    Filed: June 16, 2003
    Publication date: December 16, 2004
    Inventors: Afshin Shafiee, Joseph C. Salamone, Dharmendra Jani, Stephen Paul Bartels, Jay F. Kunzler
  • Publication number: 20040230023
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, contact lenses and corneal inlays made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based silyl monomers or the copolymerization of one or more aromatic-based silyl monomers with one or more aromatic or non-aromatic non-siloxy-based monomers, hydrophobic monomers or hydrophilic monomers.
    Type: Application
    Filed: May 18, 2004
    Publication date: November 18, 2004
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye, David P. Vanderbilt
  • Publication number: 20040215032
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, contact lenses and corneal inlays made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based silyl monomers or the copolymerization of one or more aromatic-based silyl monomers with one or more aromatic or non-aromatic non-siloxy-based monomers, hydrophobic monomers or hydrophilic monomers.
    Type: Application
    Filed: May 18, 2004
    Publication date: October 28, 2004
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye, David P. Vanderbilt
  • Publication number: 20040215156
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, contact lenses and corneal inlays made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based silyl monomers or the copolymerization of one or more aromatic-based silyl monomers with one or more aromatic or non-aromatic non-siloxy-based monomers, hydrophobic monomers or hydrophilic monomers.
    Type: Application
    Filed: May 18, 2004
    Publication date: October 28, 2004
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye, David P. Vanderbilt
  • Publication number: 20040210023
    Abstract: Optically transparent, relatively high refractive index polymeric compositions and ophthalmic devices such as intraocular lenses, contact lenses and corneal inlays made therefrom are described herein. The preferred polymeric compositions are produced through the polymerization of one or more aromatic-based silyl monomers or the copolymerization of one or more aromatic-based silyl monomers with one or more aromatic or non-aromatic non-siloxy-based monomers, hydrophobic monomers or hydrophilic monomers.
    Type: Application
    Filed: May 18, 2004
    Publication date: October 21, 2004
    Inventors: Joseph C. Salamone, Jay F. Kunzler, Richard M. Ozark, David E. Seelye, David P. Vanderbilt