Patents by Inventor Jay T. Scheuer

Jay T. Scheuer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10522330
    Abstract: Provided herein are approaches for in-situ plasma cleaning of one or more components of an ion implantation system. In one approach, the component may include a beam-line component having one or more conductive beam optics. The system further includes a power supply for supplying a first voltage and first current to the component during a processing mode and a second voltage and second current to the component during a cleaning mode. The second voltage and current may be applied to the conductive beam optics of the component, in parallel, to selectively (e.g., individually) generate plasma around one or more of the one or more conductive beam optics. The system may further include a flow controller for adjusting an injection rate of an etchant gas supplied to the component, and a vacuum pump for adjusting pressure of an environment of the component.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: December 31, 2019
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Kevin Anglin, William Davis Lee, Peter Kurunczi, Ryan Downey, Jay T. Scheuer, Alexandre Likhanskii, William M. Holber
  • Patent number: 10410844
    Abstract: Provided herein are approaches for in-situ plasma cleaning of one or more components of an ion implantation system. In one approach, the component may include a beam-line component, such as an energy purity module, having a plurality of conductive beam optics contained therein. The system further includes a power supply system for supplying a voltage and a current to the beam-line component during a cleaning mode, wherein the power supply system may include a first power plug coupled to a first subset of the plurality of conductive beam optics and a second power plug coupled to a second subset of the plurality of conductive beam optics. During a cleaning mode, the voltage and current may be simultaneously supplied and split between each of the first and second power plugs.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: September 10, 2019
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Kevin Anglin, Brant S. Binns, Peter F. Kurunczi, Jay T. Scheuer, Eric Hermanson, Alexandre Likhanskii
  • Publication number: 20180166261
    Abstract: Provided herein are approaches for in-situ plasma cleaning of one or more components of an ion implantation system. In one approach, the component may include a beam-line component, such as an energy purity module, having a plurality of conductive beam optics contained therein. The system further includes a power supply system for supplying a voltage and a current to the beam-line component during a cleaning mode, wherein the power supply system may include a first power plug coupled to a first subset of the plurality of conductive beam optics and a second power plug coupled to a second subset of the plurality of conductive beam optics. During a cleaning mode, the voltage and current may be simultaneously supplied and split between each of the first and second power plugs.
    Type: Application
    Filed: February 8, 2017
    Publication date: June 14, 2018
    Inventors: Kevin Anglin, Brant S. Binns, Peter F. Kurunczi, Jay T. Scheuer, Eric Hermanson, Alexandre Likhanskii
  • Patent number: 9805931
    Abstract: Methods for processing of a workpiece are disclosed. A fluid that contains a desired dopant is prepared. The workpiece is immersed in this fluid, such that the dopant is able to contact all surfaces of the workpiece. The fluid is then evacuated, leaving behind the dopant on the workpiece. The dopant is then subjected to a thermal treatment to drive the dopant into the surfaces of the workpiece. In certain embodiments, a selective doping process may be performed by applying a mask to certain surfaces prior to immersing the workpiece in the fluid. In certain embodiments, the fluid may be in a super-critical state to maximize the contact between the dopant and the workpiece.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: October 31, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Jay T. Scheuer, William Davis Lee, Peter L. Kellerman
  • Patent number: 9761410
    Abstract: An apparatus may include an electrostatic filter having a plurality of electrodes; a voltage supply assembly coupled to the plurality of electrodes; a cleaning ion source disposed between the electrostatic filter and a substrate position, the cleaning ion source generating a plasma during a cleaning mode, wherein a dose of ions exit the cleaning ion source; and a controller having a first component to generate a control signal for controlling the voltage supply assembly, wherein a negative voltage is applied to at least one of the plurality of electrodes when the plasma is generated.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: September 12, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Alexandre Likhanskii, Jay T. Scheuer, William Davis Lee
  • Publication number: 20170221678
    Abstract: An apparatus may include an electrostatic filter having a plurality of electrodes; a voltage supply assembly coupled to the plurality of electrodes; a cleaning ion source disposed between the electrostatic filter and a substrate position, the cleaning ion source generating a plasma during a cleaning mode, wherein a dose of ions exit the cleaning ion source; and a controller having a first component to generate a control signal for controlling the voltage supply assembly, wherein a negative voltage is applied to at least one of the plurality of electrodes when the plasma is generated.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 3, 2017
    Inventors: Alexandre Likhanskii, Jay T. Scheuer, William Davis Lee
  • Patent number: 9685298
    Abstract: An apparatus may include an ion source generating an ion beam, the ion source coupled to a first voltage. The apparatus may further include a stopping element disposed between the ion source and a substrate position; a stopping voltage supply coupled to the stopping element; and a control component to direct the stopping voltage supply to apply a stopping voltage to the stopping element, the stopping voltage being equal to or more positive than the first voltage when the ion beam comprises positive ions, and being equal to or more negative than the first voltage when the ion beam comprises negative ions, wherein at least a portion of the ion beam is deflected backwardly from an initial trajectory as deflected ions when the stopping voltage is applied to the stopping element.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: June 20, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Alexandre Likhanskii, Jay T. Scheuer, William Davis Lee
  • Publication number: 20170092473
    Abstract: Provided herein are approaches for in-situ plasma cleaning of one or more components of an ion implantation system. In one approach, the component may include a beam-line component having a conductive beam optic, the beam optic having a varied geometry configured to generate a concentrated electric field proximate the beam optic. The system further includes a power supply for supplying a first voltage and first current to the component during a processing mode and a second voltage and second current to the component during a cleaning mode. The second voltage and current may be applied to the one or more beam optics, in parallel, to selectively (e.g., individually) generate plasma in an area corresponding to the concentrated electric field. By providing custom-shaped ion beam optics, plasma density is strategically enhanced in areas where surface contamination is most prevalent, thus improving cleaning efficiency and minimizing tool down time.
    Type: Application
    Filed: September 28, 2015
    Publication date: March 30, 2017
    Inventors: William Davis Lee, Kevin Anglin, Peter Kurunczi, Ryan Downey, Jay T. Scheuer, Alexandre Likhanskii
  • Publication number: 20170062221
    Abstract: Methods for processing of a workpiece are disclosed. A fluid that contains a desired dopant is prepared. The workpiece is immersed in this fluid, such that the dopant is able to contact all surfaces of the workpiece. The fluid is then evacuated, leaving behind the dopant on the workpiece. The dopant is then subjected to a thermal treatment to drive the dopant into the surfaces of the workpiece. In certain embodiments, a selective doping process may be performed by applying a mask to certain surfaces prior to immersing the workpiece in the fluid. In certain embodiments, the fluid may be in a super-critical state to maximize the contact between the dopant and the workpiece.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 2, 2017
    Inventors: Frank Sinclair, Jay T. Scheuer, William Davis Lee, Peter L. Kellerman
  • Publication number: 20160365225
    Abstract: Provided herein are approaches for in-situ plasma cleaning of one or more components of an ion implantation system. In one approach, the component may include a beam-line component having one or more conductive beam optics. The system further includes a power supply for supplying a first voltage and first current to the component during a processing mode and a second voltage and second current to the component during a cleaning mode. The second voltage and current may be applied to the conductive beam optics of the component, in parallel, to selectively (e.g., individually) generate plasma around one or more of the one or more conductive beam optics. The system may further include a flow controller for adjusting an injection rate of an etchant gas supplied to the component, and a vacuum pump for adjusting pressure of an environment of the component.
    Type: Application
    Filed: August 7, 2015
    Publication date: December 15, 2016
    Inventors: Kevin Anglin, William Davis Lee, Peter Kurunczi, Ryan Downey, Jay T. Scheuer, Alexandre Likhanskii, William M. Holber
  • Patent number: 8330127
    Abstract: Liner elements to protect the ion source housing and also increase the power efficiency of the ion source are disclosed. Two liner elements, preferably constructed from tungsten, are inserted into the ion source chamber, one placed against each of the two sidewalls. These inserts are electrically biased so as to induce an electrical field that is perpendicular to the applied magnetic field. Such an arrangement has been unexpectedly found to increase the life of not only the ion chamber housing, but also the indirectly heated cathode (IHC) and the repeller. In addition, the use of these biased liner elements also improved the power efficiency of the ion source; allowing more ions to be generated at a given power level, or an equal number of ions to be generated at a lower power level.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: December 11, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Russell J. Low, Jay T. Scheuer, Alexander S. Perel, Craig R. Chaney, Neil J. Bassom
  • Publication number: 20110034014
    Abstract: A method of applying a silicide to a substrate while minimizing adverse effects, such as lateral diffusion of metal or “piping” is disclosed. The implantation of the source and drain regions of a semiconductor device are performed at cold temperatures, such as below 0° C. This cold implant reduces the structural damage caused by the impacting ions. Subsequently, a silicide layer is applied, and due to the reduced structural damage, metal diffusion and piping into the substrate is lessened. In some embodiments, an amorphization implant is performed after the implantation of dopants, but prior to the application of the silicide. By performing this pre-silicide implant at cold temperatures, similar results can be obtained.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 10, 2011
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Christopher R. Hatem, Benjamin Colombeau, Thirumal Thanigaivelan, Kyu-Ha Shim, Jay T. Scheuer
  • Patent number: 7878145
    Abstract: A plasma ion implantation system includes a process chamber, a source for producing a plasma in the process chamber, a platen for holding a substrate in the process chamber and a pulse source for generating implant pulses for accelerating ions from the plasma into the substrate. In one aspect, the system includes a plasma monitor configured to measure ion mass and energy in the process chamber and an analyzer configured to determine an operating condition of the system in response to the measured mass and energy. In another aspect, the system includes a data acquisition unit configured to acquire samples of the implant pulses and analyzer configured to determine an operating condition of the system based on the acquired samples.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: February 1, 2011
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Ziwei Fang, Sung-Cheon Ko, Edmund J. Winder, Daniel Distaso, Ludovic Godet, Bon Woong Koo, Jay T. Scheuer
  • Publication number: 20100155600
    Abstract: An non-Faraday ion dose measurement device is positioned within a plasma process chamber and includes a sensor located above a workpiece within the chamber. The sensor is configured to detect the number of secondary electrons emitted from a surface of the workpiece exposed to a plasma implantation process. The sensor outputs a current signal proportional to the detected secondary electrons. A current circuit subtracts the detected secondary current generated from the sensor and subtracts it from a bias current supplied to the workpiece within the chamber. The difference between the currents provides a measurement of the ion dose current calculated in situ and during the implantation process.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Joseph P Dzengeleski, Timothy J. Miler, Jay T. Scheuer, Christopher J. Leavitt
  • Publication number: 20090242793
    Abstract: Liner elements to protect the ion source housing and also increase the power efficiency of the ion source are disclosed. Two liner elements, preferably constructed from tungsten, are inserted into the ion source chamber, one placed against each of the two sidewalls. These inserts are electrically biased so as to induce an electrical field that is perpendicular to the applied magnetic field. Such an arrangement has been unexpectedly found to increase the life of not only the ion chamber housing, but also the indirectly heated cathode (IHC) and the repeller. In addition, the use of these biased liner elements also improved the power efficiency of the ion source; allowing more ions to be generated at a given power level, or an equal number of ions to be generated at a lower power level.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Inventors: Russell J. Low, Jay T. Scheuer, Alexander S. Perel, Craig R. Chaney, Neil J. Bassom
  • Publication number: 20090166555
    Abstract: The present invention discloses a system and method for generating gas cluster ion beams (GCIB) having very low metallic contaminants. Gas cluster ion beam systems are plagued by high metallic contamination, thereby affecting their utility in many applications. This contamination is caused by the use of thermionic sources, which impart contaminants and are also susceptible to short lifecycles due to their elevated operating temperatures. While earlier modifications have focused on isolating the filament from the source gas cluster as much as possible, the present invention represents a significant advancement by eliminating the thermionic source completely. In the preferred embodiment, an inductively coupled plasma and ionization region replaces the thermionic source and ionizer of the prior art. Through the use of RF or microwave frequency electromagnetic waves, plasma can be created in the absence of a filament, thereby eliminating a major contributor of metallic contaminants.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Inventors: Joseph C. Olson, Jay T. Scheuer
  • Publication number: 20080160212
    Abstract: A method and apparatuses for providing improved electrical contact to a semiconductor wafer during plasma processing applications are disclosed. In one embodiment, an apparatus includes a wafer platen for supporting the wafer; and a plurality of electrical contact elements, each of the plurality of electrical contact elements are configured to provide a path for supplying a bias voltage from a bias power supply to the wafer on the wafer platen. The plurality of electrical contact elements are also geometrically arranged such that at least one electrical contact element contacts an inner surface region (e.g., region between a center of wafer and a distance approximately half of the radius of the wafer) and at least one electrical contact element contacts an outer annular surface region (e.g., region between an outer edge of wafer and a distance approximately half of the radius of the wafer).
    Type: Application
    Filed: December 27, 2006
    Publication date: July 3, 2008
    Inventors: Bon-Woong Koo, Steven R. Walther, Christopher J. Leavitt, Justin Tocco, Sung-Hwan Hyun, Timothy J. Miller, Jay T. Scheuer, Atul Gupta, Vikram Singh, Deven Raj
  • Publication number: 20080026133
    Abstract: A plasma ion implantation system includes a process chamber, a source for producing a plasma in the process chamber, a platen for holding a substrate in the process chamber and a pulse source for generating implant pulses for accelerating ions from the plasma into the substrate. In one aspect, the system includes a plasma monitor configured to measure ion mass and energy in the process chamber and an analyzer configured to determine an operating condition of the system in response to the measured mass and energy. In another aspect, the system includes a data acquisition unit configured to acquire samples of the implant pulses and analyzer configured to determine an operating condition of the system based on the acquired samples.
    Type: Application
    Filed: June 2, 2004
    Publication date: January 31, 2008
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Ziwei Fang, Sung-Cheon Ko, Edmund J. Winder, Daniel Distaso, Ludovic Godet, Bon Woong Koo, Jay T. Scheuer
  • Patent number: 7126808
    Abstract: An apparatus is provided for handling workpieces, such as semiconductor wafers, during semiconductor processing. The apparatus includes a wafer platen having a plurality of channels each extending from a top surface to a bottom surface of the wafer platen, a plurality of lift pins in alignment with the channels, and a mechanism for engaging the lift pins in a loading position of the workpiece, a clamping position of the workpiece so that desired semiconductor processes may be performed to the workpiece, and a lift off position for removing the workpiece from the wafer platen after the semiconductor processes are completed. The mechanism places the lift pins below the surface of the wafer platen in the load position and then raises the lift pins to a first predetermined distance above the surface of the wafer platen in the clamp position such that the first predetermined distance allows the workpiece to be clamped to the wafer platen.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: October 24, 2006
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Bjorn O. Pedersen, Jay T. Scheuer, Erik A. Mitchell
  • Publication number: 20040196616
    Abstract: An apparatus is provided for handling workpieces, such as semiconductor wafers, during semiconductor processing. The apparatus includes a wafer platen having a plurality of channels each extending from a top surface to a bottom surface of the wafer platen, a plurality of lift pins in alignment with the channels, and a mechanism for engaging the lift pins in a loading position of the workpiece, a clamping position of the workpiece so that desired semiconductor processes may be performed to the workpiece, and a lift off position for removing the workpiece from the wafer platen after the semiconductor processes are completed. The mechanism places the lift pins below the surface of the wafer platen in the load position and then raises the lift pins to a first predetermined distance above the surface of the wafer platen in the clamp position such that the first predetermined distance allows the workpiece to be clamped to the wafer platen.
    Type: Application
    Filed: April 1, 2004
    Publication date: October 7, 2004
    Inventors: Bon-Woong Koo, Bjorn O. Pedersen, Jay T. Scheuer, Erik A. Mitchell