Patents by Inventor Jayesh Nath

Jayesh Nath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180069588
    Abstract: An electronic device may have a display cover layer mounted to a metal housing. Electrical component layers such as a display layer, touch sensor layer, and near-field communications antenna layer may be mounted under the display cover layer. An antenna feed may have a positive feed terminal coupled to the electrical component layers and a ground feed terminal coupled to the metal housing. The electrical component layers may serve as an antenna resonating element for an antenna. The antenna may cover cellular telephone bands and may receive satellite navigation system signals. A system-in-package device may be mounted to the metal housing. A flexible printed circuit may extend between the electrical component layers and the system-in-package device. A mounting bracket for the system-in-package device may be provided with electrical isolation to enhance antenna performance in bands such as a satellite navigation system band.
    Type: Application
    Filed: September 6, 2016
    Publication date: March 8, 2018
    Inventors: Yi Jiang, Jiangfeng Wu, Lijun Zhang, Siwen Yong, Jiaxiao Niu, Mattia Pascolini, Jayesh Nath, Carlo Di Nallo, Zheyu Wang, Mario Martinis, Eduardo Jorge Da Costa Bras Lima, Steven P. Cardinali, Rex Tyler Ehman, James G. Horiuchi, Trevor J. Ness, Scott D. Morrison, Siddharth Nangia, Mushtaq A. Sarwar
  • Publication number: 20180062264
    Abstract: An electronic device may have a housing and other structures that form an antenna ground for an antenna. An antenna resonating element arm for the antenna may extend along the periphery of the housing. The resonating element arm may have opposing first and second ends. A return path may couple the resonating element arm to the antenna ground at the first end. An antenna feed may be coupled between the resonating element arm and the antenna ground in parallel with the return path. Electrical components such as first and second capacitors may be coupled between the antenna resonating element arm and the antenna ground. A first of the capacitors may be coupled between the antenna resonating element arm and the antenna ground at a location between the first and second ends. A second of the capacitors may be coupled between the second end and the antenna ground.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Mario Martinis, Carlo Di Nallo, Jayesh Nath, Yi Jiang, Jiangfeng Wu, Lijun Zhang, Siwen Yong, Mattia Pascolini, Zheyu Wang, Eduardo Jorge Da Costa Bras Lima
  • Patent number: 9906194
    Abstract: An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: February 27, 2018
    Assignee: Aviat U.S., Inc.
    Inventors: Frank Matsumoto, Youming Qin, David C. M. Pham, Jayesh Nath, Ying Shen
  • Publication number: 20180053982
    Abstract: Systems and methods for improved chip device performance are discussed herein. An exemplary chip device for use in an integrated circuit comprises a bottom and a top opposite the bottom. The chip device comprises a through-chip device interconnect and a clearance region. The through-chip device interconnect is configured to provide an electrical connection between a ground plane trace on the bottom and a chip device path on the top of the chip device. The clearance region on the bottom of the chip device comprises an electrically conductive substance. The size and shape of the clearance region assist in impedance matching. The chip device path on the top of the chip device may further comprise at least one tuning stub. The size and shape of the at least one tuning stub also assist in impedance matching.
    Type: Application
    Filed: November 2, 2017
    Publication date: February 22, 2018
    Applicant: Aviat U.S., Inc.
    Inventors: Jayesh Nath, Ying Shen
  • Publication number: 20180048057
    Abstract: An electronic device such as a wristwatch may have a housing with metal portions such as metal sidewalls. The housing may form an antenna ground for an antenna. An antenna resonating element for the antenna may be formed from a stack of capacitively coupled component layers such as a display layer, touch sensor layer, and near-field communications antenna layer at a front face of the device. An additional antenna may be formed from a peripheral resonating element that runs along a peripheral edge of the device and the antenna ground. A rear face antenna may be formed using a wireless power receiving coil as a radio-frequency antenna resonating element or may be formed from metal antenna traces on a plastic support for light-based components.
    Type: Application
    Filed: August 11, 2016
    Publication date: February 15, 2018
    Inventors: Rex T. Ehman, Jayesh Nath, Carlo Di Nallo, James G. Horiuchi, Erik G. de Jong, Jason C. Sauers, Makiko K. Brzezinski, Siwen Yong, Lijun Zhang, Yi Jiang, Zheyu Wang, Mario Martinis, Eduardo Da Costa Bras Lima, Xu Han, Mattia Pascolini, Trevor J. Ness
  • Publication number: 20180048058
    Abstract: An electronic device such as a wristwatch may have a housing with metal portions such as metal sidewalls. The housing may form an antenna ground for an antenna. An antenna resonating element for the antenna may be formed from a stack of capacitively coupled component layers such as a display layer, touch sensor layer, and near-field communications antenna layer at a front face of the device. An additional antenna may be formed from a peripheral resonating element that runs along a peripheral edge of the device and the antenna ground. A rear face antenna may be formed using a wireless power receiving coil as a radio-frequency antenna resonating element or may be formed from metal antenna traces on a plastic support for light-based components.
    Type: Application
    Filed: August 11, 2016
    Publication date: February 15, 2018
    Inventors: Rex T. Ehman, Jayesh Nath, Carlo Di Nallo, James G. Horiuchi, Erik G. de Jong, Jason C. Sauers, Makiko K. Brzezinski, Siwen Yong, Lijun Zhang, Yi Jiang, Zheyu Wang, Mario Martinis, Eduardo Da Costa Bras Lima, Xu Han, Mattia Pascolini, Trevor J. Ness
  • Publication number: 20180017995
    Abstract: A housing for an electronic device is disclosed. The housing includes a first conductive component defining a first interface surface, a second conductive component defining a second interface surface facing the first interface surface, and a joint structure between the first and second interface surfaces. The joint structure includes a molded element forming a portion of an exterior surface of the housing, and a sealing member forming a watertight seal between the first and second conductive components. Methods of forming the electronic device housing are also disclosed.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 18, 2018
    Inventors: Brian M. Gable, Carlo Di Nallo, Colin M. Ely, Craig A. Horton, Erik G. de Jong, Fletcher R. Rothkopf, Henry B. Wettersten, Hoishun Li, Jason C. Sauers, Jayesh Nath, Mario Martinis, Mattia Pascolini, Michael P. Coleman, Rex T. Ehman, Zheyu Wang
  • Patent number: 9831540
    Abstract: Systems and methods for improved chip device performance are discussed herein. An exemplary chip device for use in an integrated circuit comprises a bottom and a top opposite the bottom. The chip device comprises a through-chip device interconnect and a clearance region. The through-chip device interconnect is configured to provide an electrical connection between a ground plane trace on the bottom and a chip device path on the top of the chip device. The clearance region on the bottom of the chip device comprises an electrically conductive substance. The size and shape of the clearance region assists in impedance matching. The chip device path on the top of the chip device may further comprise at least one tuning stub. The size and shape of the at least one tuning stub also assists in impedance matching.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: November 28, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Jayesh Nath, Ying Shen
  • Patent number: 9793599
    Abstract: An electronic device may have components mounted in a housing. The device may include wireless transceiver circuitry and antenna structures. A display may be mounted in the housing. The display may have a cover layer having an inner surface with a recess. The recess may run along a peripheral edge of the cover layer. An antenna structure such as an inverted-F antenna resonating element may be formed from a metal trace on a dielectric antenna carrier. The resonating element may be mounted in the recess without adhesive. Conductive vias may pass through the dielectric carrier. Metal members with dimples may be soldered to a flexible printed circuit and may be used to ground metal traces on the carrier and the flexible printed circuit to the housing when the carrier is attached to the housing with fasteners.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: October 17, 2017
    Assignee: Apple Inc.
    Inventors: Carlo Di Nallo, Erik G. de Jong, Jayesh Nath, Mattia Pascolini, Tang Y. Tan, Yiren Wang, Zheyu Wang
  • Patent number: 9742459
    Abstract: An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include an antenna that is tuned using tunable components. The control circuitry may gather information on the current operating mode of the electronic device, sensor data from a proximity sensor, accelerometer, microphone, and other sensors, antenna impedance information for the antenna, and information on the use of connectors in the electronic device. Based on this gathered data, the control circuitry can adjust the tunable components to compensate for antenna detuning due to loading from nearby external objects, may adjust transmit power levels, and may make other wireless circuit adjustments.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: August 22, 2017
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Mattia Pascolini, Yuehui Ouyang, Salih Yarga, Yijun Zhou, Erdinc Irci, Jayesh Nath, Ming-Ju Tsai, Matthew A. Mow, Liang Han, James G. Judkins, Robert W. Schlub
  • Publication number: 20170214136
    Abstract: An electronic device may have a display in a housing with a metal wall. An antenna may have an antenna ground formed from the wall and an antenna resonating element. Transceiver circuitry may be coupled to an antenna feed that extends between the antenna resonating element and the antenna ground. A return path may extend between the antenna resonating element and the antenna ground in parallel with the feed. The antenna resonating element may have segments that are coupled by a frequency dependent filter. At a first frequency, the filter may have a low impedance so that the antenna resonating element has a first effectively length. At a second frequency that is greater than the first frequency, the filter may have a high impedance so that the antenna resonating element has a second effective length that is shorter than the first effective length.
    Type: Application
    Filed: January 27, 2016
    Publication date: July 27, 2017
    Inventors: Erdinc Irci, Carlo Di Nallo, Jayesh Nath, Zheyu Wang, Eduardo Da Costa Bras Lima, Hongfei Hu, Mario Martinis, Mattia Pascolini
  • Publication number: 20170069946
    Abstract: Various embodiments provide for waveguide assemblies which may be utilized in wireless communication systems. Various embodiments may allow for waveguide assemblies to be assembled using tools and methodologies that are simpler than the conventional alternatives. Some embodiments provide for a waveguide assembly that comprises a straight tubular portion configured to be shortened, using simple techniques and tools, in order to fit into a waveguide assembly. For instance, for some embodiments, the waveguide assembly may be configured such that the straight portion can be shortened, at a cross section of the portion, using a basic cutting tool, such a hacksaw. In some embodiments, the straight portion may be further configured such that regardless of whether the straight tubular portion is shortened, the waveguide assembly remains capable of coupling to flanges, which facilitate coupling the straight tubular portion to connectable assemblies, such as other waveguide assemblies, radio equipment, or antennas.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 9, 2017
    Applicant: Aviat U.S., Inc.
    Inventors: Edwin Nealis, Jayesh Nath
  • Patent number: 9583813
    Abstract: Various embodiments are directed toward systems and method for manufacturing low cost passive waveguide components. For example, various embodiments relate to low cost manufacturing of passive waveguide components, including without limitation, waveguide filters, waveguide diplexers, waveguide multiplexers, waveguide bends, waveguide transitions, waveguide spacers, and antenna adapters. Some embodiments comprise manufacturing a passive waveguide component by creating a non-conductive structure using a low cost fabrication technology, such as injection molding or three-dimensional (3D) printing, and then forming a conductive layer over the non-conductive structure such that the conductive layer creates an electrical feature of the passive waveguide component.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: February 28, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Jayesh Nath, Ying Shen, Edwin Nealis
  • Patent number: 9537219
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna may have an inverted-F antenna resonating element, an antenna ground, and other resonating element structures. A tip of the antenna resonating element and the antenna ground may be separated by a peripheral housing gap filled with plastic. The antenna may be sensitive to capacitance changes induced by the presence of a user's hand overlapping the gap or other portions of the antenna. A hand capacitance sensing electrode may be mounted in the plastic of the gap or elsewhere in the vicinity of the antenna. A transmission line may couple the hand capacitance sensing electrode to the antenna to retune the antenna in the event that the user's hand overlaps the antenna.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: January 3, 2017
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Mattia Pascolini, Hongfei Hu, Erdinc Irci, Yuehui Ouyang, Jennifer M. Edwards, Jayesh Nath, Salih Yarga, Yijun Zhou, Hao Xu
  • Patent number: 9531412
    Abstract: Various embodiments provide for systems and methods for increased linear output power of a transmitter. An exemplary wireless communications system for transmitting an input signal comprises a predistorter module, a GaN power amplifier, a coupler, and an antenna. The predistorter module is configured to detect existing distortion by comparing the input signal to a feedback signal and generate a correction signal. The predistorter may adaptively adjust its operation to minimize the existing distortion due to GaN power amplifier nonlinear characteristics. The result is that the GaN power amplifier may send a power signal of improved linearity to the antenna. The coupler is configured to sample the amplified signal from the GaN power amplifier to generate the feedback signal. The antenna is configured to transmit the amplified signal.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: December 27, 2016
    Assignee: Aviat U.S., Inc.
    Inventors: Jayesh Nath, Ying Shen, Frank Matsumoto, Youming Qin, David C. M. Pham
  • Patent number: 9502743
    Abstract: Various embodiments provide for waveguide assemblies which may be utilized in wireless communication systems. Various embodiments may allow for waveguide assemblies to be assembled using tools and methodologies that are simpler than the conventional alternatives. Some embodiments provide for a waveguide assembly that comprises a straight tubular portion configured to be shortened, using simple techniques and tools, in order to fit into a waveguide assembly. For instance, for some embodiments, the waveguide assembly may be configured such that the straight portion can be shortened, at a cross section of the portion, using a basic cutting tool, such a hacksaw. In some embodiments, the straight portion may be further configured such that regardless of whether the straight tubular portion is shortened, the waveguide assembly remains capable of coupling to flanges, which facilitate coupling the straight tubular portion to connectable assemblies, such as other waveguide assemblies, radio equipment, or antennas.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: November 22, 2016
    Assignee: Aviat U.S., Inc.
    Inventors: Edwin Nealis, Jayesh Nath
  • Patent number: 9444130
    Abstract: Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include a dual arm inverted-F antenna resonating element and an antenna ground. An antenna feed may be coupled between the inverted-F antenna resonating element and the antenna ground. An adjustable component such as an adjustable inductor may be coupled between the inverted-F antenna resonating element and the antenna ground in parallel with the antenna feed. The adjustable component may be operable in multiple states such as an open circuit state, a short circuit state, and a state in which the adjustable component exhibits a non-zero inductance. Antenna bandwidth can be broadened by coupling a loop antenna resonating element across the antenna feed. A portion of the antenna ground may overlap the loop antenna resonating element to further enhance antenna bandwidth.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: September 13, 2016
    Assignee: Apple Inc.
    Inventors: Peter Bevelacqua, Hao Xu, Jayesh Nath, Jennifer M. Edwards, Mattia Pascolini
  • Patent number: 9444425
    Abstract: An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include antennas that are tuned, adjustable impedance matching circuitry, antenna port selection circuitry, and adjustable transceiver circuitry. Wireless circuit adjustments may be made by ascertaining a current usage scenario for the electronic device based on sensor data, information from cellular base station equipment or other external equipment, signal-to-noise ratio information or other signal information, antenna impedance measurements, and other information about the operation of the electronic device.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: September 13, 2016
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Thomas E. Biedka, Liang Han, Ming-Ju Tsai, James G. Judkins, Enrique Ayala Vazquez, Jayesh Nath, Hongfei Hu, Nanbo Jin, Hao Xu, Yijun Zhou, Yuehui Ouyang, Victor Lee, Mattia Pascolini, Ruben Caballero
  • Publication number: 20160261240
    Abstract: An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
    Type: Application
    Filed: May 17, 2016
    Publication date: September 8, 2016
    Applicant: Aviat U.S., Inc.
    Inventors: Frank Matsumoto, Youming Qin, David C.M. Pham, Jayesh Nath, Ying Shen
  • Publication number: 20160261023
    Abstract: An electronic device may have components mounted in a housing. The device may include wireless transceiver circuitry and antenna structures. A display may be mounted in the housing. The display may have a cover layer having an inner surface with a recess. The recess may run along a peripheral edge of the cover layer. An antenna structure such as an inverted-F antenna resonating element may be formed from a metal trace on a dielectric antenna carrier. The resonating element may be mounted in the recess without adhesive. Conductive vias may pass through the dielectric carrier. Metal members with dimples may be soldered to a flexible printed circuit and may be used to ground metal traces on the carrier and the flexible printed circuit to the housing when the carrier is attached to the housing with fasteners.
    Type: Application
    Filed: March 6, 2015
    Publication date: September 8, 2016
    Inventors: Carlo Di Nallo, Erik G. de Jong, Jayesh Nath, Mattia Pascolini, Tang Y. Tan, Yiren Wang, Zheyu Wang