Patents by Inventor Je-Min Park

Je-Min Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050095794
    Abstract: A method of fabricating a recess channel array transistor is disclosed. An impurity region is formed in a semiconductor substrate. Then, a polysilicon layer is formed on the semiconductor substrate, both of which are then etched to form a trench that defines an active region. By filling the trench with an insulating material, a STI and an interlayer insulating layer are formed. A patterned mask layer is formed to be used for etching the polysilicon layer and the interlayer insulating layer, thereby forming an opening that defines a contact pad. A Spacer is formed along a sidewall of the contact pad. Using the mask layer and the spacer, the semiconductor substrate is etched to thereby form a recess channel trench. Thereafter, a gate insulating layer and a gate conductive layer are formed. A nitride layer is formed on the resultant structure, and chemical mechanical polishing is performed to isolate the nodes.
    Type: Application
    Filed: October 19, 2004
    Publication date: May 5, 2005
    Inventor: Je-Min Park
  • Publication number: 20050095779
    Abstract: Methods of forming an integrated circuit device may include forming an insulating layer on an integrated circuit substrate, forming a first conductive layer on the insulating layer, and forming a second conductive layer on the first conductive layer so that the first conductive layer is between the second conductive layer and the insulating layer. Moreover, the first conductive layer may be a layer of a first material, the second conductive layer may be a layer of a second material, and the first and second materials may be different. A hole may be formed in the second conductive layer so that portions of the first conductive layer are exposed through the hole. After forming the hole in the second conductive layer, the first and second conductive layers may be patterned so that portions of the first and second conductive layers surrounding portions of the first conductive layer exposed through the hole are removed while maintaining portions of the first conductive layer previously exposed through the hole.
    Type: Application
    Filed: October 8, 2004
    Publication date: May 5, 2005
    Inventors: Je-Min Park, Yoo-Sang Hwang
  • Publication number: 20050040448
    Abstract: In a method of manufacturing a semiconductor device including a capacitor having improved structural stability and enhanced capacitance, a contact region is formed on a surface portion of a semiconductor substrate. After a mold layer is formed on the substrate, a stabilizing member is formed to encompass a storage electrode. A contact hole is formed through the mold layer to expose a sidewall of the stabilizing member and the contact region. The storage electrode is formed on the exposed contact region and on the exposed sidewall of the stabilizing member. A dielectric layer and a plate electrode are successively formed on the storage electrode. The capacitor including the storage electrode and the stabilizing member will have improved structural stability that resists mechanical collapse even when the capacitor has an extremely high aspect ratio.
    Type: Application
    Filed: August 11, 2004
    Publication date: February 24, 2005
    Inventor: Je-Min Park
  • Publication number: 20050032304
    Abstract: In one embodiment, an etch stop layer and a mold layer is sequentially formed on a semiconductor substrate having an interlayer insulation layer. The interlayer insulation layer includes a conductive region formed therein. The mold layer is partially etched to expose a top surface of the etching stop layer. The exposed etching stop layer and an upper portion of the interlayer insulating layer are removed to form a first aperture part that exposes a portion of the conductive region. The conductive region exposed in the first aperture part is etched to form a second aperture part. A conductive layer for the capacitor storage node is deposited on the semiconductor substrate having the first and second aperture parts. The conductive layer provided on the mold layer is planarized to form separated capacitor storage nodes.
    Type: Application
    Filed: June 18, 2004
    Publication date: February 10, 2005
    Inventors: Je-Min Park, Doo-Sup Hwang
  • Patent number: 6852620
    Abstract: A plurality of trenches for defining active regions are formed in a semiconductor substrate, using a plurality of trench masks. A gap fill insulating layer is formed on the resulting structure to fill a gap region bounded by the trench and the trench masks. Next, the trench mask and the gap fill insulating layer are patterned to form a trench mask pattern and a gap fill insulating pattern for defining a slit-type opening, extending across and exposes the active region. A gate pattern is formed in the slit-type opening and the trench mask pattern is removed to form a contact opening exposing the active region. Next, a contact plug is formed to fill the contact opening. Here, the contact opening is self-alignedly formed using an etch selectivity between the trench mask and the gap fill insulating layer. The resulting contact opening is a vacancy in a rectangular parallelepiped shape.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: February 8, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-Young Kim, Je-Min Park
  • Publication number: 20050003646
    Abstract: A semiconductor device comprises bit line landing pads and storage landing pads disposed on both sides of the bit line landing pads overlying a substrate. A bit line interlayer insulating layer overlies the bit line and storage landing pads. A plurality of bit line patternsare disposed on the bit line interlayer insulating layer. The bit line patterns each include a bit line and a bit line capping layer pattern. Line insulating layer patterns are placed on a top surface of the bit line interlayer insulating layer. Upper contact holes are placed in a region between the bit line patterns and higher than upper surfaces of the bit lines. Contact hole spacers cover the side walls of the upper contact holes. Lower contact holes are self-aligned with the upper contact holes and extend through the line insulating layer patterns and the bit line interlayer insulating layer, thereby exposing the storage node landing pads.
    Type: Application
    Filed: July 2, 2004
    Publication date: January 6, 2005
    Inventors: Je-Min Park, Yoo-Sang Hwang
  • Publication number: 20040266101
    Abstract: A storage node contact forming method and structure reduces the number of processes required by the conventional art and increases a critical dimension of a storage node to prevent a leaning phenomenon and reduce a manufacturing cost of semiconductor memory devices. The method includes preparing a semiconductor substrate that involves at least one contact pad contacted with an active region of a memory cell transistor through an insulation layer. The method also includes forming a storage node contact of T-shape, the storage node contact being composed of a lower region contacted with an upper part of the contact pad, and an upper region that is extended to a gate length direction of the memory cell transistor and that is formed as a size larger than a size of the lower region, in order to electrically connect the contact pad with a storage node to be formed in a later process.
    Type: Application
    Filed: June 22, 2004
    Publication date: December 30, 2004
    Inventors: Je-Min Park, Yoo-Sang Hwang, Cheol-Ju Yun
  • Publication number: 20040262769
    Abstract: In one embodiment, a semiconductor device comprises a conductive pad formed in a semiconductor substrate. The semiconductor device further includes a conductive pattern overlying a peripheral region of the conductive pad. The conductive pattern has an opening to expose another region of the conductive pad. The semiconductor device also includes a conductive contact extending through the opening. The conductive contact is electrically connected to the conductive pad. As a result, manufacturing cost for the semiconductor device may be reduced while manufacturing throughput may be improved.
    Type: Application
    Filed: June 22, 2004
    Publication date: December 30, 2004
    Inventor: Je-Min Park
  • Publication number: 20040238867
    Abstract: In one embodiment, a plurality of contact holes are formed using an self-aligned contact (SAC) process to expose active regions. When storage node contact or BC pads are formed in the contact holes, a conductive layer is partially filled in the contact holes to expose the sidewall of an interlayer insulating layer pattern over the BC pads. The exposed sidewall of the interlayer insulating layer pattern is covered with an etch stop spacer. Also, the top surface of the interlayer insulating layer pattern is covered with an etch stop layer. Then, a plurality of bit line contact or BC plugs are formed to contact the tops of the BC pads. A protruded region, which extends in one direction, is preferably formed on the sidewall of the contact plug.
    Type: Application
    Filed: May 24, 2004
    Publication date: December 2, 2004
    Inventor: Je-Min Park
  • Publication number: 20040235238
    Abstract: Integrated circuit capacitor electrodes include a first conductive ring on a face of an integrated circuit substrate. A second conductive ring is provided on the first conductive ring opposite the substrate. A third conductive ring also is provided on the first conductive ring opposite the substrate. The third ring is located at least partially within the second ring. A conductive layer electrically connects the first, second and third rings. To form the electrodes, a first conductive layer is conformally deposited in the areas in which the electrodes will be formed and on a mold oxide layer. A first buffer dielectric layer is deposited on the first conductive layer. The first buffer dielectric layer and the first conductive layer are etched to separate nodes of the first conductive layer. Recessed portions are formed by further etching the first conductive layer.
    Type: Application
    Filed: June 22, 2004
    Publication date: November 25, 2004
    Inventor: Je-min Park
  • Publication number: 20040219777
    Abstract: A second insulating layer is formed on a first insulating layer. A plurality of stacks each including a bit line and a bit line mask are formed on the second insulating layer. A third insulating layer is formed overlying the second insulating layer to fill gaps between the plurality of stacks. A hard mask layer is formed on the third insulating layer. A photoresist pattern is formed on the hard mask layer. The photoresist pattern has an opening region that intersects the plurality of stacks. The hard mask layer and the third insulating layer are sequentially etched, using the photoresist pattern as an etching mask, thereby forming a hard mask pattern and forming a recess in the third insulating layer. The recess exposes a portion of upper sidewalls of the bit line mask. Spacers are formed on the exposed upper sidewalls of the bit line mask.
    Type: Application
    Filed: April 22, 2004
    Publication date: November 4, 2004
    Inventors: Je-Min Park, Seung-young Son, Yoo-Sang Hwang
  • Publication number: 20040217406
    Abstract: A semiconductor device comprises a semiconductor substrate and an interlayer insulating layer formed on the semiconductor substrate. The interlayer insulating layer preferably has a contact pad formed therein. A capacitor lower electrode is electrically connected to the contact pad. The capacitor lower electrode further comprises a pad-shaped storage node electrically connected to the contact pad; and a cup-shaped storage node arranged on the pad-shaped storage node. In this manner, it is possible to increase capacitance while reducing not open contacts. Leaning of the storage nodes can also be significantly reduced.
    Type: Application
    Filed: April 30, 2003
    Publication date: November 4, 2004
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Tae-Young Chung, Jae-Goo Lee, Je-Min Park
  • Publication number: 20040183113
    Abstract: A semiconductor device comprises a semiconductor substrate including an isolation region defining an active area with a plurality of source/drain regions. A contact pad layer is formed on the semiconductor substrate and includes gate line structures, first contact pads connected to parts of the source/drain regions, second contact pads connected to the other source/drain regions. A first interlevel dielectric layer covers the gate line structures and the first and second contact pads. A bit line contact plug layer is formed on the contact pad layer and includes lower storage node contact plugs connected to the first contact pads, bit line contact plugs connected to the second contact pads. A protective layer pattern is formed on the second contact pads to prevent the second contact pads from being connected to the lower storage node contact plugs and/or upper storage node contact plugs.
    Type: Application
    Filed: March 17, 2004
    Publication date: September 23, 2004
    Inventors: Je-Min Park, Yoo-Sang Hwang
  • Patent number: 6784479
    Abstract: Integrated circuit capacitor electrodes include a first conductive ring on a face of an integrated circuit substrate. A second conductive ring is provided on the first conductive ring opposite the substrate. A third conductive ring also is provided on the first conductive ring opposite the substrate. The third ring is located at least partially within the second ring. A conductive layer electrically connects the first, second and third rings. To form the electrodes, a first conductive layer is conformally deposited in the areas in which the electrodes will be formed and on a mold oxide layer. A first buffer dielectric layer is deposited on the first conductive layer. The first buffer dielectric layer and the first conductive layer are etched to separate nodes of the first conductive layer. Recessed portions are formed by further etching the first conductive layer.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: August 31, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Je-min Park
  • Publication number: 20040147114
    Abstract: A method of manufacturing a semiconductor device with contact bodies that extend in the direction of bit lines to contact storage nodes includes forming band-type openings by selectively etching an insulating layer that covers the bit lines. The band-type openings extend in a lengthwise direction of the gate lines to expose the first contact pads and have portions that protrude in a lengthwise direction of the bit lines. The method also includes forming a conductive layer on the insulating layer that fills the band-type openings and is electrically connected to the first contact pads. The conductive layer is then patterned to separate the conductive layer into individual storage node contact bodies that extend in a lengthwise direction of the bit lines. Storgage nodes are then formed on the storage node contact bodies.
    Type: Application
    Filed: January 15, 2004
    Publication date: July 29, 2004
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Je-Min Park, Yoo-Sang Hwang
  • Patent number: 6709972
    Abstract: A semiconductor device is fabricated by forming a series of alternating first and second elongated regions on a substrate, and etching elongated trenches that are nonparallel to and extend across the first and second elongated regions. Material is placed in the elongated trenches. Portions of the first and/or second elongated regions are removed between adjacent ones of the elongated trenches that contain material therein, to define contact holes. Conductive material is placed in at least some of the portions of the first and/or second elongated regions that are selectively removed.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: March 23, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Je-min Park
  • Publication number: 20040029324
    Abstract: A method for fabricating a semiconductor device, in which a sufficient misalignment margin is obtained when forming interconnections and contact holes, is provided. Dielectric layer patterns which define recesses in which damascene interconnections are to be formed, are formed. Then, first contact holes between the dielectric layer patterns are etched, and the first contact holes and the recesses are concurrently filled with a conductive material. The recesses can be filled with the conductive material by performing an etch-back process. The dielectric layer patterns are then etched, thereby forming the damascene interconnections and concurrently covering only a region in which second contact holes are to be formed with the dielectric layer patterns. Spaces between the dielectric layer patterns are filled with a mask layer, and then the dielectric layer patterns are selectively removed from the resultant structure, thereby forming the second contact holes aligned with the damascene interconnections.
    Type: Application
    Filed: July 24, 2003
    Publication date: February 12, 2004
    Inventor: Je-Min Park
  • Publication number: 20040016964
    Abstract: A plurality of trenches for defining active regions are formed in a semiconductor substrate, using a plurality of trench masks. A gap fill insulating layer is formed on the resulting structure to fill a gap region bounded by the trench and the trench masks. Next, the trench mask and the gap fill insulating layer are patterned to form a trench mask pattern and a gap fill insulating pattern for defining a slit-type opening, extending across and exposes the active region. A gate pattern is formed in the slit-type opening and the trench mask pattern is removed to form a contact opening exposing the active region. Next, a contact plug is formed to fill the contact opening. Here, the contact opening is self-alignedly formed using an etch selectivity between the trench mask and the gap fill insulating layer. The resulting contact opening is a vacancy in a rectangular parallelepiped shape.
    Type: Application
    Filed: July 21, 2003
    Publication date: January 29, 2004
    Inventors: Ji-Young Kim, Je-Min Park
  • Publication number: 20030235948
    Abstract: A semiconductor device is fabricated by forming a series of alternating first and second elongated regions on a substrate, and etching elongated trenches that are nonparallel to and extend across the first and second elongated regions. Material is placed in the elongated trenches. Portions of the first and/or second elongated regions are removed between adjacent ones of the elongated trenches that contain material therein, to define contact holes. Conductive material is placed in at least some of the portions of the first and/or second elongated regions that are selectively removed.
    Type: Application
    Filed: January 13, 2003
    Publication date: December 25, 2003
    Inventor: Je-min Park
  • Publication number: 20030227044
    Abstract: Integrated circuit capacitor electrodes include a first conductive ring on a face of an integrated circuit substrate. A second conductive ring is provided on the first conductive ring opposite the substrate. A third conductive ring also is provided on the first conductive ring opposite the substrate. The third ring is located at least partially within the second ring. A conductive layer electrically connects the first, second and third rings. To form the electrodes, a first conductive layer is conformally deposited in the areas in which the electrodes will be formed and on a mold oxide layer. A first buffer dielectric layer is deposited on the first conductive layer. The first buffer dielectric layer and the first conductive layer are etched to separate nodes of the first conductive layer. Recessed portions are formed by further etching the first conductive layer.
    Type: Application
    Filed: May 12, 2003
    Publication date: December 11, 2003
    Inventor: Je-Min Park