Patents by Inventor Jeffrey B. Johnson

Jeffrey B. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090250739
    Abstract: Device structures with hyper-abrupt p-n junctions, methods of forming hyper-abrupt p-n junctions, and design structures for an integrated circuit containing devices structures with hyper-abrupt p-n junctions. The hyper-abrupt p-n junction is defined in a SOI substrate by implanting a portion of a device layer to have one conductivity type and then implanting a portion of this doped region to have an opposite conductivity type. The counterdoping defines the hyper-abrupt p-n junction. A gate structure carried on a top surface of the device layer operates as a hard mask during the ion implantations to assist in defining a lateral boundary for the hyper-abrupt-n junction.
    Type: Application
    Filed: April 8, 2008
    Publication date: October 8, 2009
    Inventors: Jeffrey B. Johnson, Alvin J. Joseph, Robert M. Rassel, Yun Shi
  • Patent number: 7563636
    Abstract: The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 21, 2009
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan, Mark D. Jaffe, Jeffrey B. Johnson, Alain Loiseau
  • Patent number: 7552406
    Abstract: A method and model for modeling a characteristic C that is distributed within a domain. A provided base equation expresses C as a function f of a variable V through use of N+1 parameters C0, C1, . . . , CN in the form C=f(C0, C1, . . . , CN, V), wherein N?1, and wherein C0, C1, . . . , CN are subject to uncertainty. A probability density function (PDF) is provided for describing the probability of occurrence of C0 in accordance with the uncertainty. Subsidiary equations expressing C1, . . . , CN in terms of C0 are provided. A value of C may be sampled by: providing a value V? of V; picking a random value C0R of C0 from the PDF; computing values C1R, . . . , CNR of C1, . . . , CN, respectively, by substituting C0R into the subsidiary equations; and calculating C by substituting C0R, C1R, . . . , CNR and V? into the base equation.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: June 23, 2009
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey B. Johnson, Bartholomew Martin, Jr.
  • Patent number: 7518215
    Abstract: A semiconductor structure comprising a hyperabrupt junction varactor with a compensated cathode contact as well as a method of fabricating the same are disclosed. The method includes a single implant mask which is used in forming the subcollector/cathode, collector/well and hyperabrupt junction.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: April 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Stephen S. Furkay, Jeffrey B. Johnson, Robert M. Rassel
  • Patent number: 7516426
    Abstract: Methods of improving operational parameters between at least a pair of matched transistors, and a set of transistors, are disclosed. One embodiment of a method includes a method of improving at least one of a threshold voltage (Vt) mismatch and current drive between at least a pair of matched transistors for analog applications, the method comprising: forming at least a pair of transistors, each with a gate having a plurality of connected fingers; and optimizing a total length of a channel under the plurality of fingers to attain at least one of: a) a reduced threshold voltage mismatch between the at least pair of transistors, and b) increased current drive for a given threshold voltage mismatch, between the at least pair of transistors, each finger having a length less than an overall length of the channel.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: April 7, 2009
    Assignee: International Business Machines Corporation
    Inventors: Terence B. Hook, Jeffrey B. Johnson, Yoo-Mi Lee
  • Publication number: 20090035886
    Abstract: A novel CMOS image sensor Active Pixel Sensor (APS) cell structure and method of manufacture. Particularly, a CMOS image sensor APS cell having a predoped transfer gate is formed that avoids the variations of Vt as a result of subsequent manufacturing steps. According to the preferred embodiment of the invention, the CMOS image sensor APS cell structure includes a doped p-type pinning layer and an n-type doped gate. There is additionally provided a method of forming the CMOS image sensor APS cell having a predoped transfer gate and a doped pinning layer. The predoped transfer gate prevents part of the gate from becoming p-type doped.
    Type: Application
    Filed: September 28, 2007
    Publication date: February 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John Ellis-Monaghan, Jeffrey B. Johnson, Alain Loiseau
  • Patent number: 7476926
    Abstract: A nonvolatile storage cell and an integrated circuit (IC) including the cells. A layered spacer (ONO) is formed at least at one sidewall of cell gates. Source/drain diffusions at each layered spacer underlap the adjacent gate. Charge may be stored at a layer (an imbedded nitride layer) in the layered spacer.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: January 13, 2009
    Assignee: International Business Machines Corporation
    Inventors: Chung H. Lam, Jeffrey B. Johnson
  • Patent number: 7473605
    Abstract: Disclosed are embodiments of a trigate field effect transistor that comprises a fin-shaped semiconductor body with a channel region and source/drain regions on either side of the channel region. Thick gate dielectric layers separate the top surface and opposing sidewalls of the channel region from the gate conductor in order to suppress conductivity in the channel planes. A thin gate dielectric layer separates the upper corners of the channel region from the gate conductor in order to optimize conductivity in the channel corners. To further emphasize the current flow in the channel corners, the source/drain regions can be formed in the upper corners of the semiconductor body alone. Alternatively, source/drain extension regions can be formed only in the upper corners of the semiconductor body adjacent to the gate conductor and deep source/drain diffusion regions can be formed in the ends of the semiconductor body.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Jeffrey B. Johnson, Edward J. Nowak
  • Publication number: 20080315266
    Abstract: A junction field effect transistor (JFET) has a hyperabrupt junction layer that functions as a channel of a JFET. The hyperabrupt junction layer is formed by two dopant profiles of opposite types such that one dopant concentration profile has a peak concentration depth at a tail end of the other dopant profile. The voltage bias to the channel is provided by a body that is doped with the same type of dopants as the gate. This is in contrast with conventional JFETs that have a body that is doped with the opposite conductivity type as the gate. The body may be electrically decoupled from the substrate by another reverse bias junction formed either between the body and the substrate or between a buried conductor layer beneath the body and the substrate. The capability to form a thin hyperabrupt junction layer allows formation of a JFET in a semiconductor-on-insulator substrate.
    Type: Application
    Filed: June 25, 2007
    Publication date: December 25, 2008
    Inventors: Ebenezer E. Eshun, Jeffrey B. Johnson, Richard A. Phelps, Robert M. Rassel, Michael J. Zierak
  • Publication number: 20080296476
    Abstract: The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
    Type: Application
    Filed: July 14, 2008
    Publication date: December 4, 2008
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan, Mark D. Jaffe, Jeffrey B. Johnson, Alain Lolseau
  • Publication number: 20080272399
    Abstract: The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
    Type: Application
    Filed: July 14, 2008
    Publication date: November 6, 2008
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan, Mark D. Jaffe, Jeffrey B. Johnson, Alain Loiseau
  • Publication number: 20080272400
    Abstract: The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
    Type: Application
    Filed: July 14, 2008
    Publication date: November 6, 2008
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan, Mark D. Jaffe, Jeffrey B. Johnson, Alain Loiseau
  • Publication number: 20080274578
    Abstract: The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
    Type: Application
    Filed: July 14, 2008
    Publication date: November 6, 2008
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan, Mark D. Jaffe, Jeffrey B. Johnson, Alain Loiseau
  • Patent number: 7439561
    Abstract: The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: October 21, 2008
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan, Mark D. Jaffe, Jeffrey B. Johnson, Alain Loiseau
  • Publication number: 20080217742
    Abstract: Bipolar transistor device structures that improve bipolar device reliability with little or no negative impact on device performance. In one embodiment, the bipolar device has a collector of first conductivity type material formed in a substrate, a base of a second conductivity type material including an extrinsic base layer and an intrinsic base layer, a raised emitter of a first conductivity type semiconductor material formed on the intrinsic base layer, and, a dielectric material layer separating the intrinsic base region and the raised emitter region, and, a thin “shunt” layer of dopant of second conductivity type material added to the region below the emitter dielectric layer. In a second embodiment, a selectively implanted collector (pedestal implant) is added to the vertical bipolar transistor device to enable a reduction in overall subcollector doping level to improve reliability without sacrificing device performance.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 11, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey B. Johnson, Edward J. Nowak, Andreas D. Stricker, Benjamin T. Voegeli
  • Publication number: 20080179703
    Abstract: The structure for millimeter-wave frequency applications, includes a Schottky barrier diode (SBD) with a cutoff frequency (FC) above 1.0 THz formed on a SiGe BiCMOS wafer. A method is also contemplated for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.
    Type: Application
    Filed: September 12, 2007
    Publication date: July 31, 2008
    Inventors: Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel
  • Publication number: 20080116527
    Abstract: Methods of improving operational parameters between at least a pair of matched transistors, and a set of transistors, are disclosed. One embodiment of a method includes a method of improving at least one of a threshold voltage (Vt) mismatch and current drive between at least a pair of matched transistors for analog applications, the method comprising: forming at least a pair of transistors, each with a gate having a plurality of connected fingers; and optimizing a total length of a channel under the plurality of fingers to attain at least one of: a) a reduced threshold voltage mismatch between the at least pair of transistors, and b) increased current drive for a given threshold voltage mismatch, between the at least pair of transistors, each finger having a length less than an overall length of the channel.
    Type: Application
    Filed: November 20, 2006
    Publication date: May 22, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Terence B. Hook, Jeffrey B. Johnson, Yoo-Mi Lee
  • Patent number: 7326976
    Abstract: Disclosed are embodiments of a trigate field effect transistor that comprises a fin-shaped semiconductor body with a channel region and source/drain regions on either side of the channel region. Thick gate dielectric layers separate the top surface and opposing sidewalls of the channel region from the gate conductor in order to suppress conductivity in the channel planes. A thin gate dielectric layer separates the upper corners of the channel region from the gate conductor in order to optimize conductivity in the channel corners. To further emphasize the current flow in the channel corners, the source/drain regions can be formed in the upper corners of the semiconductor body alone. Alternatively, source/drain extension regions can be formed only in the upper corners of the semiconductor body adjacent to the gate conductor and deep source/drain diffusion regions can be formed in the ends of the semiconductor body.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: February 5, 2008
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Jeffrey B. Johnson, Edward J. Nowak
  • Publication number: 20070278614
    Abstract: A lateral passive device is disclosed including a dual annular electrode. The annular electrodes form an anode and a cathode. The annular electrodes allow anode and cathode series resistances to be optimized to the lowest values at a fixed device area. In addition, the parasitic capacitance to a bottom plate (substrate) is greatly reduced. In one embodiment, a device includes a first annular electrode surrounding a second annular electrode formed on a substrate, and the second annular electrode surrounds an insulator region. A related method is also disclosed.
    Type: Application
    Filed: June 5, 2006
    Publication date: December 6, 2007
    Inventors: David S. Collins, Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
  • Patent number: 7288788
    Abstract: A novel Active Pixel Sensor (APS) cell structure and method of manufacture. Particularly, an image sensor APS cell having a predoped transfer gate is formed that avoids the variations of Vt as a result of subsequent manufacturing steps. According to the preferred embodiment of the invention, the image sensor APS cell structure includes a doped p-type pinning layer and an n-type doped gate. There is additionally provided a method of forming the image sensor APS cell having a predoped transfer gate and a doped pinning layer. The predoped transfer gate prevents part of the gate from becoming p-type doped.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: John Ellis-Monaghan, Jeffrey B. Johnson, Alain Loiseau