Patents by Inventor Jeffrey Babcock

Jeffrey Babcock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230352522
    Abstract: Semiconductor devices for high frequency operations are described. The semiconductor devices include a substrate with an epitaxial layer. The epitaxial layer has higher resistivity than the substrate and includes a surface facing away from the substrate. The epitaxial layer includes a shallow trench isolation (STI) structure extended to a first depth from the surface, which is surrounded by a well structure. Underneath the STI structure, the epitaxial layer includes a lightly doped portion exclusive of dopant atoms of the well structure. Moreover, the STI structure includes an inner portion surrounded by a deep trench isolation structure extended to a second depth from the surface, the second depth being greater than the first depth. An integrated circuit component is located above the inner portion of the STI structure.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Inventors: Mattias Dahlstrom, Joseph De Santis, Jeffrey A. Babcock
  • Patent number: 11024649
    Abstract: Complementary high-voltage bipolar transistors in silicon-on-insulator (SC) integrated circuits is disclosed. In one disclosed embodiment, a collector region is formed in an epitaxial silicon layer disposed over a buried insulator layer. A base region and an emitter are disposed over the collector region. An n-type region is formed under the buried insulator layer (BOX) by implanting donor impurity through the active region of substrate and BOX into a p-substrate. Later in the process flow this n-type region is connected from the top by doped poly-silicon plug and is biased at Vcc. In this case it will deplete lateral portion of PNP collector region and hence, will increase its BV.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: June 1, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Alexei Sadovnikov, Jeffrey A. Babcock
  • Publication number: 20200227440
    Abstract: Complementary high-voltage bipolar transistors in silicon-on-insulator (SC) integrated circuits is disclosed. In one disclosed embodiment, a collector region is formed in an epitaxial silicon layer disposed over a buried insulator layer. A base region and an emitter are disposed over the collector region. An n-type region is formed under the buried insulator layer (BOX) by implanting donor impurity through the active region of substrate and BOX into a p-substrate. Later in the process flow this n-type region is connected from the top by doped poly-silicon plug and is biased at Vcc. In this case it will deplete lateral portion of PNP collector region and hence, will increase its BV.
    Type: Application
    Filed: March 25, 2020
    Publication date: July 16, 2020
    Inventors: Alexei Sadovnikov, Jeffrey A. Babcock
  • Patent number: 10636815
    Abstract: Complementary high-voltage bipolar transistors in silicon-on-insulator (SOI) integrated circuits is disclosed. In one disclosed embodiment, a collector region is formed in an epitaxial silicon layer disposed over a buried insulator layer. A base region and an emitter are disposed over the collector region. An n-type region is formed under the buried insulator layer (BOX) by implanting donor impurity through the active region of substrate and BOX into a p-substrate. Later in the process flow this n-type region is connected from the top by doped poly-silicon plug and is biased at Vcc. In this case it will deplete lateral portion of PNP collector region and hence, will increase its BV.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: April 28, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Alexei Sadovnikov, Jeffrey A. Babcock
  • Patent number: 10504921
    Abstract: Complementary high-voltage bipolar transistors in silicon-on-insulator (SOI) integrated circuits is disclosed. In one disclosed embodiment, a collector region is formed in an epitaxial silicon layer disposed over a buried insulator layer. A base region and an emitter are disposed over the collector region. An n-type region is formed under the buried insulator layer (BOX) by implanting donor impurity through the active region of substrate and BOX into a p-substrate. Later in the process flow this n-type region is connected from the top by doped poly-silicon plug and is biased at Vcc. In this case it will deplete lateral portion of PNP collector region and hence, will increase its BV.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: December 10, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Alexei Sadovnikov, Jeffrey A. Babcock
  • Publication number: 20190252410
    Abstract: Complementary high-voltage bipolar transistors in silicon-on-insulator (SOI) integrated circuits is disclosed. In one disclosed embodiment, a collector region is formed in an epitaxial silicon layer disposed over a buried insulator layer. A base region and an emitter are disposed over the collector region. An n-type region is formed under the buried insulator layer (BOX) by implanting donor impurity through the active region of substrate and BOX into a p-substrate. Later in the process flow this n-type region is connected from the top by doped poly-silicon plug and is biased at Vcc. In this case it will deplete lateral portion of PNP collector region and hence, will increase its BV.
    Type: Application
    Filed: April 25, 2019
    Publication date: August 15, 2019
    Inventors: Alexei Sadovnikov, Jeffrey A. Babcock
  • Patent number: 10269895
    Abstract: Complementary high-voltage bipolar transistors formed in standard bulk silicon integrated circuits are disclosed. In one disclosed embodiment, collector regions are formed in an epitaxial silicon layer. Base regions and emitters are disposed over the collector region. An n-type region is formed under collector region by implanting donor impurities into a p-substrate for the PNP transistor and implanting acceptor impurities into the p-substrate for the NPN transistor prior to depositing the collector epitaxial regions. Later in the process flow these n-type and p-type regions are connected to the top of the die by a deep n+ and p+ wells respectively. The n-type well is then coupled to VCC while the p-type well is coupled to GND, providing laterally depleted portions of the PNP and NPN collector regions and hence, increasing their BVs.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 23, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey A. Babcock, Alexei Sadovnikov
  • Publication number: 20170309703
    Abstract: Complementary high-voltage bipolar transistors formed in standard bulk silicon integrated circuits are disclosed. In one disclosed embodiment, collector regions are formed in an epitaxial silicon layer. Base regions and emitters are disposed over the collector region. An n-type region is formed under collector region by implanting donor impurities into a p-substrate for the PNP transistor and implanting acceptor impurities into the p-substrate for the NPN transistor prior to depositing the collector epitaxial regions. Later in the process flow these n-type and p-type regions are connected to the top of the die by a deep n+ and p+ wells respectively. The n-type well is then coupled to VCC while the p-type well is coupled to GND, providing laterally depleted portions of the PNP and NPN collector regions and hence, increasing their BVs.
    Type: Application
    Filed: July 12, 2017
    Publication date: October 26, 2017
    Inventors: Jeffrey A. BABCOCK, Alexei SADOVNIKOV
  • Patent number: 9741790
    Abstract: Complementary high-voltage bipolar transistors formed in standard bulk silicon integrated circuits are disclosed. In one disclosed embodiment, collector regions are formed in an epitaxial silicon layer. Base regions and emitters are disposed over the collector region. An n-type region is formed under collector region by implanting donor impurities into a p-substrate for the PNP transistor and implanting acceptor impurities into the p-substrate for the NPN transistor prior to depositing the collector epitaxial regions. Later in the process flow these n-type and p-type regions are connected to the top of the die by a deep n+ and p+ wells respectively. The n-type well is then coupled to VCC while the p-type well is coupled to GND, providing laterally depleted portions of the PNP and NPN collector regions and hence, increasing their BVs.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: August 22, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey A. Babcock, Alexei Sadovnikov
  • Publication number: 20170194352
    Abstract: Complementary high-voltage bipolar transistors in silicon-on-insulator (SOl) integrated circuits is disclosed. In one disclosed embodiment, a collector region is formed in an epitaxial silicon layer disposed over a buried insulator layer. A base region and an emitter are disposed over the collector region. An n-type region is formed under the buried insulator layer (BOX) by implanting donor impurity through the active region of substrate and BOX into a p-substrate. Later in the process flow this n-type region is connected from the top by doped poly-silicon plug and is biased at Vcc. In this case it will deplete lateral portion of PNP collector region and hence, will increase its BV.
    Type: Application
    Filed: March 21, 2017
    Publication date: July 6, 2017
    Inventors: Alexei Sadovnikov, Jeffrey A. Babcock
  • Patent number: 9640611
    Abstract: Complementary high-voltage bipolar transistors in silicon-on-insulator (SOI) integrated circuits is disclosed. In one disclosed embodiment, a collector region is formed in an epitaxial silicon layer disposed over a buried insulator layer. A base region and an emitter are disposed over the collector region. An n-type region is formed under the buried insulator layer (BOX) by implanting donor impurity through the active region of substrate and BOX into a p-substrate. Later in the process flow this n-type region is connected from the top by doped poly-silicon plug and is biased at Vcc. In this case it will deplete lateral portion of PNP collector region and hence, will increase its BV.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: May 2, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Alexei Sadovnikov, Jeffrey A. Babcock
  • Patent number: 9633994
    Abstract: A MOSFET transistor in a SiGe BICMOS technology and resulting structure having a drain-gate feedback capacitance shield formed between a gate electrode and the drain region. The shield does not overlap the gate and thereby minimizes effect on the input capacitance of the transistor. The process does not require complex or costly processing since the shield is composed of bipolar base material commonly used in SiGe BICMOS technologies.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: April 25, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey A. Babcock, Alexei Sadovnikov
  • Patent number: 9633995
    Abstract: A method of fabricating a MOSFET transistor in a SiGe BICMOS technology and resulting structure having a drain-gate feedback capacitance shield formed between a gate electrode and the drain region. The shield does not overlap the gate and thereby minimizes effect on the input capacitance of the transistor. The process does not require complex or costly processing since the shield is composed of bipolar base material commonly used in SiGe BICMOS technologies.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: April 25, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey A. Babcock, Alexei Sadovnikov
  • Publication number: 20160233294
    Abstract: Complementary high-voltage bipolar transistors formed in standard bulk silicon integrated circuits are disclosed. In one disclosed embodiment, collector regions are formed in an epitaxial silicon layer. Base regions and emitters are disposed over the collector region. An n-type region is formed under collector region by implanting donor impurities into a p-substrate for the PNP transistor and implanting acceptor impurities into the p-substrate for the NPN transistor prior to depositing the collector epitaxial regions. Later in the process flow these n-type and p-type regions are connected to the top of the die by a deep n+ and p+ wells respectively. The n-type well is then coupled to VCC while the p-type well is coupled to GND, providing laterally depleted portions of the PNP and NPN collector regions and hence, increasing their BVs.
    Type: Application
    Filed: April 14, 2016
    Publication date: August 11, 2016
    Inventors: Jeffrey A. BABCOCK, Alexei SADOVNIKOV
  • Publication number: 20160172355
    Abstract: A method of fabricating a MOSFET transistor in a SiGe BICMOS technology and resulting structure having a drain-gate feedback capacitance shield formed between a gate electrode and the drain region. The shield does not overlap the gate and thereby minimizes effect on the input capacitance of the transistor. The process does not require complex or costly processing since the shield is composed of bipolar base material commonly used in SiGe BICMOS technologies.
    Type: Application
    Filed: February 23, 2016
    Publication date: June 16, 2016
    Inventors: Jeffrey A. Babcock, Alexei Sadovnikov
  • Publication number: 20160172245
    Abstract: A method of fabricating a MOSFET transistor in a SiGe BICMOS technology and resulting structure having a drain-gate feedback capacitance shield formed between a gate electrode and the drain region. The shield does not overlap the gate and thereby minimizes effect on the input capacitance of the transistor. The process does not require complex or costly processing since the shield is composed of bipolar base material commonly used in SiGe BICMOS technologies.
    Type: Application
    Filed: February 23, 2016
    Publication date: June 16, 2016
    Inventors: Jeffrey A. Babcock, Alexei Sadovnikov
  • Patent number: 9343459
    Abstract: Complementary high-voltage bipolar transistors formed in standard bulk silicon integrated circuits are disclosed. In one disclosed embodiment, collector regions are formed in an epitaxial silicon layer. Base regions and emitters are disposed over the collector region. An n-type region is formed under collector region by implanting donor impurities into a p-substrate for the PNP transistor and implanting acceptor impurities into the p-substrate for the NPN transistor prior to depositing the collector epitaxial regions. Later in the process flow these n-type and p-type regions are connected to the top of the die by a deep n+ and p+ wells respectively. The n-type well is then coupled to VCC while the p-type well is coupled to GND, providing laterally depleted portions of the PNP and NPN collector regions and hence, increasing their BVs.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: May 17, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey A. Babcock, Alexei Sadovnikov
  • Patent number: 9306013
    Abstract: A method of fabricating a MOSFET transistor in a SiGe BICMOS technology and resulting structure having a drain-gate feedback capacitance shield formed between a gate electrode and the drain region. The shield does not overlap the gate and thereby minimizes effect on the input capacitance of the transistor. The process does not require complex or costly processing since the shield is composed of bipolar base material commonly used in SiGe BICMOS technologies.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: April 5, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey A. Babcock, Alexei Sadovnikov
  • Publication number: 20150340448
    Abstract: A method of fabricating a MOSFET transistor in a SiGe BICMOS technology and resulting structure having a drain-gate feedback capacitance shield formed between a gate electrode and the drain region. The shield does not overlap the gate and thereby minimizes effect on the input capacitance of the transistor. The process does not require complex or costly processing since the shield is composed of bipolar base material commonly used in SiGe BICMOS technologies.
    Type: Application
    Filed: May 23, 2014
    Publication date: November 26, 2015
    Inventors: Jeffrey A. Babcock, Alexei Sadovnikov
  • Publication number: 20150287716
    Abstract: Complementary high-voltage bipolar transistors formed in standard bulk silicon integrated circuits are disclosed. In one disclosed embodiment, collector regions are formed in an epitaxial silicon layer. Base regions and emitters are disposed over the collector region. An n-type region is formed under collector region by implanting donor impurities into a p-substrate for the PNP transistor and implanting acceptor impurities into the p-substrate for the NPN transistor prior to depositing the collector epitaxial regions. Later in the process flow these n-type and p-type regions are connected to the top of the die by a deep n+ and p+ wells respectively. The n-type well is then coupled to VCC while the p-type well is coupled to GND, providing laterally depleted portions of the PNP and NPN collector regions and hence, increasing their BVs.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 8, 2015
    Inventors: Jeffrey A. Babcock, Alexei Sadovnikov