Patents by Inventor Jen-Inn Chyi

Jen-Inn Chyi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150255546
    Abstract: A viscosity measurement system, which is for measuring the viscosity of a fluid, comprises a transistor-type viscosity sensor, an electrical measurement unit, and a processing unit. The transistor-type viscosity sensor includes a semiconductor structure, a source terminal, and a drain terminal. The semiconductor structure includes a GaN layer and an AlGaN layer disposed on the GaN layer. The portion of the semiconductor structure that is between the source terminal and the drain terminal has a gate region, which has an exposed surface for being in contact with the fluid. The electrical measurement unit is in electrical connection with the source terminal and the drain terminal and for measuring an electronic signal of the semiconductor structure. The processing unit is coupled to the electrical measurement unit and for determining the viscosity of the fluid according to the electronic signal measured.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 10, 2015
    Inventors: Yu-Lin Wang, Jen-Inn Chyi, Jung-Ying Fang
  • Patent number: 9093510
    Abstract: A field effect transistor device is provided by the invention. The field effect transistor device includes: a substrate; a buffer layer, a channel layer, and a first barrier layer sequentially disposed on the substrate; a two-dimensional electron gas controlling layer disposed on the first barrier layer; a second barrier layer disposed on the two-dimensional electron gas controlling layer, wherein the second barrier layer has a recess passing through the second barrier layer; and a gate electrode filled into the recess and separated from the second barrier layer and the two-dimensional electron gas controlling layer by an insulating layer.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: July 28, 2015
    Assignees: NATIONAL CENTRAL UNIVERSITY, DELTA ELECTRONICS, INC.
    Inventors: Jen-Inn Chyi, Hui-Ling Lin, Geng-Yen Lee, Shih-Peng Chen
  • Patent number: 9076650
    Abstract: A method for fabricating a mesa sidewall with a spin coated dielectric material and a semiconductor element fabricated by the same are provided in the present invention. The method includes the steps of: disposing an object on a semiconductor substrate; performing a spin coating process to coat with a liquid dielectric material; performing a drying process to dry the liquid dielectric material; performing a first etching process to remove an upper part of the dried dielectric material to expose a metal part (unaffected by ion bombardment) of the object; performing a deposition process to insulate the metal part (unaffected by ion bombardment) of the object; and performing a second etching process to form a semiconductor element with a mesa sidewall.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: July 7, 2015
    Assignee: NATIONAL CENTRAL UNIVERSITY
    Inventors: Jen-Inn Chyi, Sheng-Yu Wang, Jiun-Ming Chen
  • Patent number: 9070708
    Abstract: A semiconductor device including a substrate, a heterojunction body, a passivation layer, a source contact, a drain contact, and a gate contact. The heterojunction body disposed on or above the substrate includes a first semiconductor layer, a mask layer, a regrowth layer, and a second semiconductor layer. The first semiconductor layer is disposed on or above the substrate. The mask layer is disposed on or above a portion of the first semiconductor layer. The regrowth layer disposed on the first semiconductor layer and adjacent to the mask layer includes a main portion and at least one inclined portion. The second semiconductor layer is disposed on the mask layer and the regrowth layer. The passivation layer is disposed on the second semiconductor layer. The gate contact is disposed on the passivation layer, between the source contact and the drain contact, and at least above the inclined portion of the regrowth layer.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: June 30, 2015
    Assignees: NATIONAL CENTRAL UNIVERSITY, DELTA ELECTRONICS, INC.
    Inventors: Jen-Inn Chyi, Geng-Yen Lee, Wei-Kai Shen, Ching-Chuan Shiue, Tai-Kang Shing
  • Publication number: 20140264450
    Abstract: A semiconductor device including a substrate, a heterojunction body, a passivation layer, a source contact, a drain contact, and a gate contact. The heterojunction body disposed on or above the substrate includes a first semiconductor layer, a mask layer, a regrowth layer, and a second semiconductor layer. The first semiconductor layer is disposed on or above the substrate. The mask layer is disposed on or above a portion of the first semiconductor layer. The regrowth layer disposed on the first semiconductor layer and adjacent to the mask layer includes a main portion and at least one inclined portion. The second semiconductor layer is disposed on the mask layer and the regrowth layer. The passivation layer is disposed on the second semiconductor layer. The gate contact is disposed on the passivation layer, between the source contact and the drain contact, and at least above the inclined portion of the regrowth layer.
    Type: Application
    Filed: January 27, 2014
    Publication date: September 18, 2014
    Applicants: DELTA ELECTRONICS, INC., National Central University
    Inventors: Jen-Inn CHYI, Geng-Yen LEE, Wei-Kai SHEN, Ching-Chuan SHIUE, Tai-Kang SHING
  • Publication number: 20140217472
    Abstract: A method for fabricating a mesa sidewall with a spin coated dielectric material and a semiconductor element fabricated by the same are provided in the present invention. The method includes the steps of: disposing an object on a semiconductor substrate; performing a spin coating process to coat with a liquid dielectric material; performing a drying process to dry the liquid dielectric material; performing a first etching process to remove an upper part of the dried dielectric material to expose a metal part (unaffected by ion bombardment) of the object; performing a deposition process to insulate the metal part (unaffected by ion bombardment) of the object; and performing a second etching process to form a semiconductor element with a mesa sidewall.
    Type: Application
    Filed: September 6, 2013
    Publication date: August 7, 2014
    Applicant: National Central University
    Inventors: Jen-Inn CHYI, Sheng-Yu WANG, Jiun-Ming CHEN
  • Patent number: 8679881
    Abstract: A growth method for reducing defect density of GaN includes steps of: sequentially forming a buffer growth layer, a stress release layer and a first nanometer cover layer on a substrate, wherein the first nanometer cover layer has multiple openings interconnected with the stress release layer; growing a first island in each of the openings; growing a first buffer layer and a second nanometer cover layer on the first island; and growing a second island to form a dislocated island structure. Thus, through the first nanometer cover layer and the second nanometer cover layer, multiple dislocated island structures can be directly formed to reduce manufacturing complexity as well as increase yield rate by decreasing manufacturing environment variation. Further, the epitaxial lateral over growth (ELOG) approach also effectively enhances characteristics of GaN optoelectronic semiconductor elements.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: March 25, 2014
    Assignee: Tekcore Co., Ltd.
    Inventors: Jen-Inn Chyi, Lung-Chieh Cheng, Hsueh-Hsing Liu, Geng-Yen Lee
  • Publication number: 20140042455
    Abstract: A field effect transistor device is provided by the invention. The field effect transistor device includes: a substrate; a buffer layer, a channel layer, and a first barrier layer sequentially disposed on the substrate; a two-dimensional electron gas controlling layer disposed on the first barrier layer; a second barrier layer disposed on the two-dimensional electron gas controlling layer, wherein the second barrier layer has a recess passing through the second barrier layer; and a gate electrode filled into the recess and separated from the second barrier layer and the two-dimensional electron gas controlling layer by an insulating layer.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Applicants: Delta Electronics, Inc., National Central University
    Inventors: Jen-Inn CHYI, Hui-Ling LIN, Geng-Yen LEE, Shih-Peng CHEN
  • Patent number: 8629012
    Abstract: An integrated circuit structure includes a substrate and a first and a second plurality of III-V semiconductor layers. The first plurality of III-V semiconductor layers includes a first bottom barrier over the substrate; a first channel layer over the first bottom barrier; and a first top barrier over the first channel layer. A first field-effect transistor (FET) includes a first channel region, which includes a portion of the first channel layer. The second plurality of III-V semiconductor layers is over the first plurality of III-V semiconductor layers and includes a second bottom barrier; a second channel layer over the second bottom barrier; and a second top barrier over the second channel layer. A second FET includes a second channel region, which includes a portion of the second channel layer.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Heng-Kuang Lin, Pei-Chin Chiu, Jen-Inn Chyi, Han-Chieh Ho, Clement Hsingjen Wann, Chih-Hsin Ko, Cheng-Hsien Wu
  • Patent number: 8594474
    Abstract: A Mach-Zehnder wavelength division multiplexer (WDM) is provided. The WDM has a short length with flat passband and low crosstalk. Since passband is flattened, crosstalk is reduced and length of the WDM is shortened, the WDN can be used for optical communication and optical interconnection in a single chip.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: November 26, 2013
    Assignee: National Central University
    Inventors: Hung-Chih Lu, Jen-Inn Chyi
  • Patent number: 8586995
    Abstract: A semiconductor element having a high breakdown voltage includes a substrate, a buffer layer, a semiconductor composite layer and a bias electrode. The buffer layer disposed on the substrate includes a high edge dislocation defect density area. The semiconductor composite layer disposed on the buffer layer includes a second high edge dislocation defect density area formed due to the first high edge dislocation defect density area. The bias electrode is disposed on the semiconductor composite layer. A virtual gate effect of defect energy level capturing electrons is generated due to the first and second high edge dislocation defect density areas, such that an extended depletion region expanded from the bias electrode is formed at the semiconductor composite layer. When the bias electrode receives a reverse bias, the extended depletion region reduces a leakage current and increases the breakdown voltage of the semiconductor element.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: November 19, 2013
    Assignee: National Central University
    Inventors: Jen-Inn Chyi, Geng-Yen Lee, Hsueh-Hsing Liu
  • Publication number: 20130277713
    Abstract: An As(arsenic)/Sb(antimony) compound semiconductor is grown on a Si(silicon) or Ge (germanium) substrate. With the present invention, island-like growth on the Si or Ge substrate owing to lattice constant mismatch is prevented. Bad electrical isolation owing to diffusion of Ge is also prohibited. The present invention could obtain a high quality metamorphic buffer which is suitable for integrating a Si or Ge substrate with an electronic or optoelectronic device of a III/V group semiconductor.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 24, 2013
    Applicant: NATIONAL CENTRAL UNIVERSITY
    Inventors: Jen-Inn Chyi, Wei-Jen Hsueh, Pei-Chin Chiu
  • Publication number: 20130240895
    Abstract: A semiconductor element having a high breakdown voltage includes a substrate, a buffer layer, a semiconductor composite layer and a bias electrode. The buffer layer disposed on the substrate includes a high edge dislocation defect density area. The semiconductor composite layer disposed on the buffer layer includes a second high edge dislocation defect density area formed due to the first high edge dislocation defect density area. The bias electrode is disposed on the semiconductor composite layer. A virtual gate effect of defect energy level capturing electrons is generated due to the first and second high edge dislocation defect density areas, such that an extended depletion region expanded from the bias electrode is formed at the semiconductor composite layer. When the bias electrode receives a reverse bias, the extended depletion region reduces a leakage current and increases the breakdown voltage of the semiconductor element.
    Type: Application
    Filed: August 9, 2012
    Publication date: September 19, 2013
    Inventors: Jen-Inn CHYI, Geng-Yen Lee, Hsueh-Hsing Liu
  • Patent number: 8524583
    Abstract: A method for growing a semipolar nitride comprises steps: forming a plurality of parallel discrete trenches on a silicon substrate, each discrete trenches having a first wall and a second wall, wherein a tilt angle is formed between the surface of the silicon substrate and the first wall; forming a buffer layer on the silicon substrate and the trenches, wherein the buffer layer on the first wall has a plurality of growing zones and a plurality of non-growing zones among the growing zones and complementary to the growing zones; forming a cover layer on the buffer layer and revealing the growing zones; and growing a semipolar nitride from the growing zones of the buffer layer and covering the cover layer. Thereby cracks caused by thermal stress between the silicon substrate and semipolar nitride are decreased and the quality of the semipolar nitride film is improved.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: September 3, 2013
    Assignee: National Central University
    Inventors: Jen-Inn Chyi, Hsueh-Hsing Liu, Hsien Yu Lin
  • Patent number: 8478091
    Abstract: A single-stage 1×5 grating-assisted wavelength division multiplexer is provided. A grating-assisted asymmetric Mach-Zehnder interferometer, a plurality of grating-assisted cross-state directional couplers and a plurality of novel side-band eliminators are combined to form the multiplexer. Only general gratings are required, not Bragg grating, for 5-channel wavelength division multiplexing in a single stage. A nearly ideal square-like band-pass filtering passband is obtained. The present disclosure can be used as a core device in IC-to-IC optical interconnects for multiplexing and demultiplexing of an optical transceiver. The present disclosure has a small size and good performance.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: July 2, 2013
    Assignee: National Central University
    Inventors: Hung-Chih Lu, Jen-Inn Chyi
  • Patent number: 8426226
    Abstract: A method for fabricating an integrated AC LED module comprises steps: forming a junction layer on a substrate, and defining a first growth area and a second growth area on the junction layer; respectively growing a Schottky diode and a LED on the first growth area and the second growth area; forming a passivation layer and a metallic layer on the Schottky diode, the LED and the substrate. Thereby, the Schottky diode is electrically connected with the LED via the metallic layer. Thus is promoted the reliability of electric connection of diodes, reduced the layout area of the module, and decreased the fabrication cost.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: April 23, 2013
    Assignee: National Central University
    Inventors: Jen-Inn Chyi, Geng-Yen Lee, Wei-Sheng Lin
  • Patent number: 8406579
    Abstract: A wavelength division multiplexing and optical modulation apparatus includes at least two modulation region-added grating-assisted cross-state directional coupler units and a modulation region-added cross-state directional coupler. The modulation region-added grating-assisted cross-state directional coupler units and the modulation region-added cross-state directional coupler unit are connected to one another in serial. Each of the modulation region-added grating-assisted cross-state directional coupler units each includes a modulation region-added cross-state directional coupler, a grating and a modulation region. The modulation region-added cross-state directional coupler unit includes an output waveguide, an input waveguide and a modulation region.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: March 26, 2013
    Assignee: National Central University
    Inventors: Hung-Chih Lu, Jen-Inn Chyi
  • Publication number: 20130034919
    Abstract: A method for fabricating an integrated AC LED module comprises steps: forming a junction layer on a substrate, and defining a first growth area and a second growth area on the junction layer; respectively growing a Schottky diode and a LED on the first growth area and the second growth area; forming a passivation layer and a metallic layer on the Schottky diode, the LED and the substrate. Thereby, the Schottky diode is electrically connected with the LED via the metallic layer. Thus is promoted the reliability of electric connection of diodes, reduced the layout area of the module, and decreased the fabrication cost.
    Type: Application
    Filed: January 3, 2012
    Publication date: February 7, 2013
    Inventors: Jen-Inn CHYI, Geng-Yen Lee, Wei-Sheng Lin
  • Publication number: 20120329254
    Abstract: An integrated circuit structure includes a substrate and a first and a second plurality of III-V semiconductor layers. The first plurality of III-V semiconductor layers includes a first bottom barrier over the substrate; a first channel layer over the first bottom barrier; and a first top barrier over the first channel layer. A first field-effect transistor (FET) includes a first channel region, which includes a portion of the first channel layer. The second plurality of III-V semiconductor layers is over the first plurality of III-V semiconductor layers and includes a second bottom barrier; a second channel layer over the second bottom barrier; and a second top barrier over the second channel layer. A second FET includes a second channel region, which includes a portion of the second channel layer.
    Type: Application
    Filed: August 27, 2012
    Publication date: December 27, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Heng-Kuang Lin, Pei-Chin Chiu, Jen-Inn Chyi, Han-Chieh Ho, Clement Hsingjen Wann, Chih-Hsin Ko, Cheng-Hsien Wu
  • Publication number: 20120328234
    Abstract: A low-loss optical coupling apparatus includes a silicon-on-insulator wafer, a silicon dioxide layer, a taper waveguide, a channel waveguide and a thick-film silicon dioxide layer. The silicon-on-insulator wafer is formed with a silicon substrate. The silicon dioxide layer is provided on the silicon substrate. The taper waveguide comprises a slab region formed on the silicon dioxide layer and a waveguide region formed on the slab region. An end of a chip is connected to an end of the waveguide region. The channel waveguide is formed on the slab region and connected to another end of the waveguide region. The thick-film silicon dioxide layer extends on the taper waveguide and covers the entire waveguide region.
    Type: Application
    Filed: November 10, 2011
    Publication date: December 27, 2012
    Applicant: NATIONAL CENTRAL UNIVERSITY
    Inventors: Hung-Chih Lu, Jen-Inn Chyi