Patents by Inventor Jen-Yuan Chang

Jen-Yuan Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11837586
    Abstract: A package structure includes a package substrate, a first die, a second die, a first underfill, and a second underfill. The first die and a second die are disposed on the package substrate. The first underfill is between the first die and the package substrate, and the first underfill includes a first extension portion extending from a first sidewall of the first die toward the second die. The second underfill is between the second die and the package substrate, and the second underfill includes a second extension portion extending from a second sidewall of the second die toward the first die, the second extension portion overlapping the first extension portion on the package substrate.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: December 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jen-Yuan Chang, Sheng-Chih Wang
  • Publication number: 20230387089
    Abstract: A semiconductor package includes a first connection die including a semiconductor substrate and an interconnect structure, and a first die stack disposed on the first connection die and including stacked dies, each of the stacked dies including a semiconductor substrate and an interconnect structure including a first connection line that is electrically connected to the interconnect structure of the first connection die. An angle formed between a plane of the first connection die and a plane of each stacked die ranges from about 45° to about 90°.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 30, 2023
    Inventors: Jen-Yuan CHANG, Chia-Ping LAI
  • Publication number: 20230386972
    Abstract: A die includes: a semiconductor substrate having a front side and an opposing back side; a dielectric structure including a substrate oxide layer disposed on the front side of the semiconductor substrate and interlayer dielectric (ILD) layers disposed on the substrate oxide layer; an interconnect structure disposed in the dielectric structure; a through-silicon via (TSV) structure extending in a vertical direction from the back side of the semiconductor substrate through the front side of the semiconductor substrate, such that a first end of the TSV structure is disposed in the interconnect structure; and a TSV barrier structure including a barrier line that contacts the first end of the TSV structure, and a first seal ring disposed in the substrate oxide layer and that surrounds the TSV structure in a lateral direction perpendicular to the vertical direction.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 30, 2023
    Inventors: Jen-Yuan CHANG, Chia-Ping LAI, Shih-Chang CHEN, Tzu-Chung TSAI, Chien-Chang LEE
  • Publication number: 20230386948
    Abstract: A semiconductor device and method of forming such a device includes a MEMS component including one or more MEMS pixels and having a MEMS membrane substrate and a MEMS sidewall. The semiconductor device includes an analog circuit component bonded to the MEMS component, and which includes at least one analog CMOS component within an analog circuit insulative layer, and an analog circuit component substrate. The semiconductor device includes an HPC component bonded to the analog circuit component substrate. The HPC component includes at least one HPC metal component disposed within an HPC insulative layer, at least one bond pad, at least one bond pad via connecting the at least one bond pad and the at least one HPC metal component, and an HPC substrate. Additionally, the semiconductor device includes a DTC component bonded to the HPC substrate, and which includes a DTC die disposed in a DTC substrate.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Inventors: You-Ru Lin, Sheng Kai Yeh, Jen-Yuan Chang, Chi-Yuan Shih, Chia-Ming Hung, Hsiang-Fu Chen, Shih-Fen Huang
  • Publication number: 20230386957
    Abstract: A stacked semiconductor device includes a cooling structure to increase the cooling efficiency of the stacked semiconductor device. The cooling structure includes various types of cooling components integrated into the stacked semiconductor device that are configured to remove and/or dissipate heat from dies of the stacked semiconductor device. In this way, the cooling structure reduces device failures and permits the stacked semiconductor device to operate at greater voltages, greater speeds, and/or other increased performance parameters by removing and/or dissipating heat from the stacked semiconductor device.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 30, 2023
    Inventor: Jen-Yuan CHANG
  • Publication number: 20230378154
    Abstract: A moat trench laterally surrounding a device region is formed in a substrate. A conductive metallic substrate enclosure structure is formed in the moat trench. Deep trenches are formed in the substrate, and a trench capacitor structure is formed in the deep trenches. The substrate may be thinned by removing a backside portion of the substrate. A backside surface of the conductive metallic substrate enclosure structure is physically exposed. A backside metal layer is formed on a backside surface of the substrate and a backside surface of the conductive metallic substrate enclosure structure. A metallic interconnect enclosure structure and a metallic cap plate may be formed to provide a metallic shield structure configured to block electromagnetic radiation from impinging into the trench capacitor structure.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 23, 2023
    Inventors: Jen-Yuan Chang, Chia-Ping LAI, Chien-Chang LEE
  • Publication number: 20230378028
    Abstract: A semiconductor arrangement and method of forming the semiconductor arrangement are provided. The semiconductor arrangement includes a device having a first surface and a second surface opposite the first surface. A first through substrate via (TSV) structure extends between the first surface and the second surface in a first region of the device. A second TSV structure extends between the first surface and the second surface in a second region of the device. The first TSV structure has a first cross-sectional area. The second TSV structure has a second cross-sectional area greater than the first cross-sectional area.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 23, 2023
    Inventor: Jen-Yuan CHANG
  • Publication number: 20230378051
    Abstract: Some implementations described herein provide a semiconductor structure. The semiconductor structure includes a capacitor device within a recessed portion of a substrate. The recessed portion has sidewalls and a bottom surface below a top surface of the substrate. The semiconductor structure includes a dielectric material disposed below the capacitor device and within the recessed portion. The semiconductor structure includes a first conductive structure adjacent one or more of the sidewalls of the recessed portion. The first conductive structure may include a conductive portion of the substrate or a conductive material disposed within the recessed portion. The semiconductor structure includes a second conductive structure coupled to the first conductive structure, where the second conductive structure provides an electrical connection from the first conductive structure to a voltage source or a voltage drain.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 23, 2023
    Inventors: Jen-Yuan CHANG, Chia-Ping LAI, Chien-Chang LEE
  • Publication number: 20230378136
    Abstract: A semiconductor die includes a first semiconductor substrate; a first interconnect structure disposed on a front side of the first semiconductor substrate; a first through-substrate via (TSV) structure extending through the first semiconductor substrate; and a first fuse structure disposed between and electrically connecting the TSV structure and the first interconnect structure.
    Type: Application
    Filed: August 2, 2023
    Publication date: November 23, 2023
    Inventors: Jen-Yuan CHANG, Chia-Ping LAI
  • Publication number: 20230378247
    Abstract: A three-dimensional device structure includes a die including a semiconductor substrate, an interconnect structure disposed on the semiconductor substrate, a through silicon via (TSV) structure that extends through the semiconductor substrate and electrically contacts a metal feature of the interconnect structure, and an integrated passive device (IPD) embedded in the semiconductor substrate and electrically connected to the TSV structure.
    Type: Application
    Filed: August 2, 2023
    Publication date: November 23, 2023
    Inventors: Jen-Yuan CHANG, Chien-Chang LEE, Chia-Ping LAI, Tzu-Chung TSAI
  • Publication number: 20230369294
    Abstract: An array of complementary die sets is attached to a carrier substrate. A continuous complementary-level molding compound layer is formed around the array of complementary die sets. An array of primary semiconductor dies is attached to the array of complementary die sets. A continuous primary-level molding compound layer is formed around the array of primary semiconductor dies. The bonded assembly is diced by cutting along directions that are parallel to edges of the primary semiconductor dies. The sidewalls of the complementary dies are azimuthally tilted relative to sidewalls of the primary semiconductor dies, or major crystallographic directions of a single crystalline material in the carrier substrate are azimuthally tilted relative to sidewalls of the primary semiconductor dies.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Inventors: Jen-Yuan CHANG, Chia-Ping LAI
  • Patent number: 11817373
    Abstract: A semiconductor arrangement and method of forming the semiconductor arrangement are provided. The semiconductor arrangement includes a device having a first surface and a second surface opposite the first surface. A first through substrate via (TSV) structure extends between the first surface and the second surface in a first region of the device. A second TSV structure extends between the first surface and the second surface in a second region of the device. The first TSV structure has a first cross-sectional area. The second TSV structure has a second cross-sectional area greater than the first cross-sectional area.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventor: Jen-Yuan Chang
  • Publication number: 20230352448
    Abstract: A semiconductor device includes a first semiconductor die mounted on a substrate, a second semiconductor die mounted on the substrate and separated from the first semiconductor die, a first dielectric material between the first semiconductor die and the second semiconductor die and having a first density, and a column of second dielectric material in the first dielectric material, the second dielectric material having a second density different than the first density, and the second dielectric material including a void region.
    Type: Application
    Filed: July 3, 2023
    Publication date: November 2, 2023
    Inventors: Jen-Yuan Chang, Tzu-Chung Tsai
  • Publication number: 20230352427
    Abstract: A die includes: a semiconductor substrate; an interconnect structure disposed on the semiconductor substrate and including: inter-metal dielectric (IMD) layers; metal features embedded in the IMD layers; and a guard ring structure including concentric first and second guard rings that extend through at least a subset of the IMD layers; and a through silicon via (TSV) structure extending through the semiconductor substrate and the subset of IMD layers to electrically contact one of the metal features. The first guard ring surrounds the TSV structure; and the second guard ring surrounds the first guard ring and is configured to reduce a parasitic capacitance between the guard ring structure and the TSV structure.
    Type: Application
    Filed: June 21, 2023
    Publication date: November 2, 2023
    Inventors: Jen-Yuan CHANG, Chien-Chang LEE, Chia-Ping LAI
  • Publication number: 20230343736
    Abstract: A semiconductor package structure includes a first die, a second die disposed on the first die, and a bonding pad structure. The first die includes a semiconductor substrate, an interconnect structure disposed on the first semiconductor substrate, a passivation layer disposed on the interconnect structure, and a test pad disposed on the passivation layer. The test pad includes a contact region that extends through the passivation layer and electrically contacts the interconnect structure, and a bonding recess that overlaps with the contact region in a vertical direction perpendicular to a plane of the first semiconductor substrate. The bonding pad structure electrically connects the first die and the second die and directly contacts at least a portion of the bonding recess.
    Type: Application
    Filed: June 24, 2023
    Publication date: October 26, 2023
    Inventor: Jen-Yuan CHANG
  • Publication number: 20230343653
    Abstract: A method includes forming an integrated circuit and a testing pattern over a die region of a wafer and a scribe line region of the wafer, respectively, in which the integrated circuit and the testing pattern are formed by a same fabrication process; connecting a via of a testing chip to a testing pad of the testing pattern; performing a testing process to the die region by detecting electrical properties of the testing pattern through the testing chip; after the testing process is completed, forming an interconnection structure over the integrated circuit, in which the interconnection structure includes conductive features electrically connected to the integrated circuit; and after the interconnection structure is formed over the integrated circuit performing an singulation process through the scribe line region of the wafer, such that the die region of the wafer is singulated into an individual die.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 26, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jen-Yuan CHANG, Kong-Beng THEI, Jung-Hui KAO
  • Publication number: 20230326888
    Abstract: A semiconductor package is provided. The semiconductor package includes: an interposer; a System on Integrated Chips (SoIC) die stack bonded to a top surface of the interposer, the SoIC die stack comprising two or more dies bonded together; and a plurality of chips bonded to the top surface of the interposer. A first lateral distance, in a first direction, between a first boundary of the SoIC die stack and a boundary of a neighboring chip among the plurality of chips is larger than a first threshold distance.
    Type: Application
    Filed: April 6, 2022
    Publication date: October 12, 2023
    Inventor: Jen-Yuan Chang
  • Patent number: 11776896
    Abstract: Some implementations described herein provide a semiconductor structure. The semiconductor structure includes a capacitor device within a recessed portion of a substrate. The recessed portion has sidewalls and a bottom surface below a top surface of the substrate. The semiconductor structure includes a dielectric material disposed below the capacitor device and within the recessed portion. The semiconductor structure includes a first conductive structure adjacent one or more of the sidewalls of the recessed portion. The first conductive structure may include a conductive portion of the substrate or a conductive material disposed within the recessed portion. The semiconductor structure includes a second conductive structure coupled to the first conductive structure, where the second conductive structure provides an electrical connection from the first conductive structure to a voltage source or a voltage drain.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: October 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Yuan Chang, Chia-Ping Lai, Chien-Chang Lee
  • Publication number: 20230307418
    Abstract: A semiconductor package is provided. The semiconductor package includes: a bottom die having a first bonding layer formed at a top surface of the bottom die; a top die on the bottom die, wherein the top die comprises a second bonding layer formed at a bottom surface of the top die, and the top die is bonded to the bottom die by bonding the first bonding layer and the second bonding layer using hybrid bonding; a dummy die on the bottom die and lateral to the top die, wherein the dummy die comprises a third bonding layer formed at a bottom surface of the dummy die, and the dummy die is bonded to the bottom die by bonding the first bonding layer and the third bonding layer; and at least one dummy metal pad formed in one of the first bonding layer and the third bonding layer and not electrically connected.
    Type: Application
    Filed: March 23, 2022
    Publication date: September 28, 2023
    Inventor: Jen-Yuan Chang
  • Publication number: 20230307384
    Abstract: A semiconductor die is provided. The semiconductor die includes: a silicon substrate; a bonding layer formed at a back side of the silicon substrate and including a first metal pad; a multi-layer interconnect (MLI) structure formed at a front side of the silicon substrate; a first through-silicon via (TSV) penetrating the silicon substrate and at least a portion of the MLI structure in a vertical direction, wherein a first end of the first TSV is in contact with and electrically connected to the first metal pad, and a second end of the first TSV is electrically connected to a first metal track located in the MLI structure; and a first guard ring formed in the MLI structure, wherein the first guard ring extends in the vertical direction and surrounds the first TSV, and the first guard ring is electrically connected to the first metal track.
    Type: Application
    Filed: March 23, 2022
    Publication date: September 28, 2023
    Inventor: Jen-Yuan Chang