Patents by Inventor Jennifer Wong

Jennifer Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6931543
    Abstract: To prevent copying of a design implemented in a programmable logic device (PLD), the PLD itself stores a decryption key or keys loaded by the designer, and includes a decryptor for decrypting an encrypted configuration bitstream as it is loaded into the PLD. The PLD also includes logic for reading header information that indicates whether the bitstream is encrypted, and can accept both encrypted and unencrypted bitstreams. The encryption keys may be stored in non-volatile memory or backed up with a battery so that they are retained when power is removed.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: August 16, 2005
    Assignee: Xilinx, Inc.
    Inventors: Raymond C. Pang, Walter N. Sze, Jennifer Wong, Stephen M. Trimberger, John M. Thendean, Kameswara K. Rao
  • Publication number: 20050144210
    Abstract: Described is a programmable logic device (PLD) with columns of DSP slices that can be cascaded to create DSP circuits of varying size and complexity. Each slice includes a mode port that receives mode control signals for dynamically altering the function and connectivity of related slices. Such alterations can occur with or without reconfiguring the PLD.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 30, 2005
    Applicant: Xilinx, Inc.
    Inventors: James Simkins, Steven Young, Jennifer Wong, Bernard New, Alvin Ching
  • Publication number: 20050144211
    Abstract: Described is a programmable logic device (PLD) with columns of DSP slices that can be combined to create DSP circuits of varying size and complexity. DSP slices in accordance with some embodiments includes programmable operand input registers that can be configured to introduce different amounts of delay, from zero to two clock cycles, for example, to support pipelining. In one such embodiment, each DSP slice includes a partial-product generator having a multiplier port, a multiplicand port, and a product port. The multiplier and multiplicand ports connect to the operand input port via respective first and second operand input registers, each of which is capable of introducing from zero to two clock cycles of delay. In another embodiment, the output of at least one operand input register can connect to the input of an operand input register of a downstream DSP slice so that operands can be transferred among one or more slices.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 30, 2005
    Applicant: Xilinx, Inc.
    Inventors: James Simkins, Steven Young, Jennifer Wong, Bernard New, Alvin Ching
  • Publication number: 20050144215
    Abstract: In one embodiment an IC is disclosed which includes a plurality of cascaded digital signal processing slices, wherein each slice has a multiplier coupled to an adder via a multiplexer and each slice has a direct connection to an adjoining slice; and means for configuring the plurality of digital signal processing slices to perform one or more mathematical operations, via, for example, opmodes. This IC allows for the implementation of some basic math functions, such as add, subtract, multiply and divide. Many other applications may be implemented using the one or more DSP slices, for example, accumulate, multiply accumulate (MACC), a wide multiplexer, barrel shifter, counter, and folded, decimating, and interpolating FIRs to name a few.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 30, 2005
    Applicant: Xilinx, Inc.
    Inventors: James Simkins, Steven Young, Jennifer Wong, Bernard New, Alvin Ching
  • Publication number: 20050144213
    Abstract: Described are mathematical circuits that perform flexible rounding schemes. The circuits require few additional resources and can be adjusted dynamically to change the number of bits involved in the rounding. In one embodiment, a DSP circuit stores a rounding constant selected from the group of binary numbers 2(M?1) and 2(M?1)?1, calculates a correction factor, and sums the rounding constant, the correction factor, and a data item to obtain a rounded data item.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 30, 2005
    Applicant: Xilinx, Inc.
    Inventors: James Simkins, Steven Young, Jennifer Wong, Bernard New, Alvin Ching
  • Publication number: 20050144216
    Abstract: Described are arithmetic circuits divided logically into a product generator and an adder. Multiplexing circuitry logically disposed between the product generator and the adder supports conventional functionality by providing partial products from the product generator to addend terminals of the adder. The multiplexing circuitry can also be controlled to direct a number of external added inputs to the adder. The additional addend inputs can include inputs and outputs cascaded from other arithmetic circuits.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 30, 2005
    Applicant: Xilinx, Inc.
    Inventors: James Simkins, Steven Young, Jennifer Wong, Bernard New, Alvin Ching
  • Publication number: 20050144212
    Abstract: Described is a programmable logic device (PLD) with columns of DSP slices that can be cascaded to create DSP circuits of varying size and complexity. Each DSP slice includes a plurality of operand input ports and a slice output port, all of which are programmably connected to general routing and logic resources. The operand ports receive operands for processing, and a slice output port conveys processed results. Each slice additionally includes a feedback port connected to the respective slice output port, to support accumulate functions in this embodiment, and a cascade input port connected to the output port of an upstream slice to support cascading.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 30, 2005
    Applicant: Xilinx, Inc.
    Inventors: James Simkins, Steven Young, Jennifer Wong, Bernard New, Alvin Ching
  • Publication number: 20040265922
    Abstract: The invention is directed to novel compositions of matter and methods of detecting in situ an immunohistochemical epitope or nucleic acid sequence of interest in a biological sample comprising binding an enzyme-labeled conjugate molecule to the epitope or sequence of interest in the presence of a redox-inactive reductive species and a soluble metal ion, thereby facilitating the reduction of the metal ion to a metal atom at or about the point where the enzyme is anchored. Novel phosphate derivatives of reducing agents are described that when exposed to a phosphatase are activated to their reducing form, thereby reducing metal ions to insoluble metal.
    Type: Application
    Filed: June 24, 2004
    Publication date: December 30, 2004
    Applicant: Ventana Medical Systems, Inc.
    Inventors: Christopher Bieniarz, Casey A. Kernag, Jerome W. Kosmeder, Paula M. Rodgers, Jennifer Wong
  • Patent number: 6803786
    Abstract: Structures and methods of including processor capabilities in an existing PLD architecture with minimal disruption to the existing general interconnect structure. In a PLD including a column of block RAM (BRAM) blocks, the BRAM blocks are modified to create specialized logic blocks including a RAM, a processor, and a dedicated interface coupled between the RAM, the processor, and the general interconnect structure of the PLD. The additional area is obtained by increasing the width of the column of BRAM blocks. Because the interconnect structure remains virtually unchanged, the interconnections between the specialized logic blocks and the adjacent tiles are already in place, and the modifications do not affect the PLD routing software. In some embodiments, the processor can be optionally disabled, becoming transparent to the user. Other embodiments provide methods of modifying a PLD to include the structures and provide the capabilities described above.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: October 12, 2004
    Assignee: Xilinx, Inc.
    Inventors: Goran Bilski, Ralph D. Wittig, Jennifer Wong, David B. Squires
  • Publication number: 20030044823
    Abstract: The invention provides novel reagents, reagent kits, and methods for automated hybridization. More particularly, the invention provides reagents, reagent kits, and methods for automated in situ hybridization and automated hybridization on a microarray. The use of automated instruments for in situ hybridization and microarray hybridization dramatically reduces the amount of labor and time involved and also facilitates standardization of protocols and consistency between results.
    Type: Application
    Filed: April 30, 2002
    Publication date: March 6, 2003
    Inventors: Catherine Wolf, Hiroaki Nitta, Thomas Grogan, Jacques Cavadenti, Lidija Pestic-Dragovich, Anthony Hartman, Angela Sattler, Jennifer Wong
  • Patent number: 6480954
    Abstract: A programmable logic device (PLD) comprises at least one configurable element, and a plurality of programmable logic elements for configuring the configurable element(s). Alternatively, a PLD comprises an interconnect structure and a plurality of programmable logic elements for configuring the interconnect structure. In either embodiment, at least one of the programmable logic elements includes N memory cells. A predetermined one of the N memory cells forms part of a memory slice, wherein at least a portion of each slice of the programmable logic device is allocated to either configuration data or user data memory. Typically, one memory slice provides one configuration of the programmable logic device. In accordance with one embodiment, a memory access port is coupled between at least one of the N memory cells and either one configurable element or the interconnect, thereby facilitating loading of new configuration data into other memory slices during the one configuration.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: November 12, 2002
    Assignee: Xilinx Inc.
    Inventors: Stephen M. Trimberger, Richard A. Carberry, Robert Anders Johnson, Jennifer Wong
  • Patent number: 6441641
    Abstract: A PLD can be manufactured to include power supply lines from two sources so that a portion of the PLD can be backed up with a battery when power to the PLD is removed. A switch that supplies power to the backed up portion of the PLD receives power from both an external power supply and from the battery, and detects voltage level of the external power supply, switching to battery power when voltage from the external power supply is not sufficient.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: August 27, 2002
    Assignee: Xilinx, Inc.
    Inventors: Raymond C. Pang, Venu M. Kondapalli, Jane W. Sowards, Scott O. Frake, Jennifer Wong, F. Erich Goetting, Peter H. Alfke, Schuyler E. Shimanek
  • Patent number: 6366117
    Abstract: It is sometimes desirable to encrypt a design for loading into a PLD so that an attacker may not learn and copy the design as it is being copied into the PLD. According to the invention, the encrypted design is decrypted by a key or keys within the PLD that are preserved when power is removed by either being stored in nonvolatile memory or by being backed up with a battery that switches into operation when the power is removed from the PLD.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: April 2, 2002
    Assignee: Xilinx, Inc.
    Inventors: Raymond C. Pang, Jennifer Wong, Scott O. Frake, Jane W. Sowards, Venu M. Kondapalli, F. Erich Goetting, Stephen M. Trimberger, Kameswara K. Rao
  • Patent number: 6353341
    Abstract: A clock signal is monitored to detect a transition from a first logic state to a second logic state. Once this transition is detected, subsequent transitions of the clock signal are ignored for a predetermined time period during which signal interference is most significant. After lapse of the predetermined time period, the clock signal is again monitored to detect subsequent state transitions. In some embodiments, the clock signal is delayed using a delay circuit to produce a delayed clock signal which is used to force the clock signal to the second logic state for a predetermined time period. In one embodiment, the predetermined time period is user-selectable via one or more selectable taps on the delay circuit.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: March 5, 2002
    Assignee: Xilinx, Inc.
    Inventors: Austin H. Lesea, Peter H. Alfke, Jennifer Wong, Steven P. Young
  • Publication number: 20020010853
    Abstract: A programmable logic device (PLD) comprises at least one configurable element, and a plurality of programmable logic elements for configuring the configurable element(s). Alternatively, a PLD comprises an interconnect structure and a plurality of programmable logic elements for configuring the interconnect structure. In either embodiment, at least one of the programmable logic elements includes N memory cells. A predetermined one of the N memory cells forms part of a memory slice, wherein at least a portion of each slice of the programmable logic device is allocated to either configuration data or user data memory. Typically, one memory slice provides one configuration of the programmable logic device. In accordance with one embodiment, a memory access port is coupled between at least one of the N memory cells and either one configurable element or the interconnect, thereby facilitating loading of new configuration data into other memory slices during the one configuration.
    Type: Application
    Filed: June 6, 2001
    Publication date: January 24, 2002
    Applicant: Xilinx, Inc.
    Inventors: Stephen M. Trimberger, Richard A. Carberry, Robert Anders Johnson, Jennifer Wong
  • Patent number: 6263430
    Abstract: A programmable logic device (PLD) comprises at least one configurable element, and a plurality of programmable logic elements for configuring the configurable element(s). Alternatively, a PLD comprises an interconnect structure and a plurality of programmable logic elements for configuring the interconnect structure. In either embodiment, at least one of the programmable logic elements includes N memory cells. A predetermined one of the N memory cells forms part of a memory slice, wherein at least a portion of each slice of the programmable logic device is allocated to either configuration data or user data memory. Typically, one memory slice provides one configuration of the programmable logic device. In accordance with one embodiment, a memory access port is coupled between at least one of the N memory cells and either one configurable element or the interconnect, thereby facilitating loading of new configuration data into other memory slices during the one configuration.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: July 17, 2001
    Assignee: Xilinx, Inc.
    Inventors: Stephen M. Trimberger, Richard A. Carberry, Robert Anders Johnson, Jennifer Wong
  • Patent number: 6204695
    Abstract: A clock gating circuit is provided for a logic device that reduces device resource requirements, eliminates the need for users to define their own clock gating circuit, and eliminates undesirable clock signal disturbances, such as glitches and runt pulses. In one embodiment, the clock gating circuit includes an input terminal for receiving an input clock signal; an input terminal for receiving a clock enable signal; a storage latch coupled to receive the input clock signal and the clock enable signal, and in response, provide a clock gate control signal; and a logic gate coupled to receive the input clock signal and the clock gate control signal. The logic gate selectively routes the input clock signal in response to the clock gate control signal, thereby providing an output clock signal.
    Type: Grant
    Filed: June 18, 1999
    Date of Patent: March 20, 2001
    Assignee: Xilinx, Inc.
    Inventors: Peter H. Alfke, Alvin Y. Ching, Scott O. Frake, Jennifer Wong, Steven P. Young
  • Patent number: 5978260
    Abstract: A programmable logic device (PLD) comprises at least one configurable element, and a plurality of programmable logic elements for configuring the configurable element(s). Alternatively, a PLD comprises an interconnect structure and a plurality of programmable logic elements for configuring the interconnect structure. In either embodiment, at least one of the programmable logic elements includes N memory cells. A predetermined one of the N memory cells forms part of a memory slice, wherein at least a portion of each slice of the programmable logic device is allocated to either configuration data or user data memory. Typically, one memory slice provides one configuration of the programmable logic device. In accordance with one embodiment, a memory access port is coupled between at least one of the N memory cells and either one configurable element or the interconnect, thereby facilitating loading of new configuration data into other memory slices during the one configuration.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: November 2, 1999
    Assignee: Xilinx, Inc.
    Inventors: Stephen M. Trimberger, Richard A. Carberry, Robert Anders Johnson, Jennifer Wong
  • Patent number: 5959881
    Abstract: A programmable logic device (PLD) comprises at least one configurable element, and a plurality of programmable logic elements for configuring the configurable element(s). Alternatively, a PLD comprises an interconnect structure and a plurality of programmable logic elements for configuring the interconnect structure. In either embodiment, at least one of the programmable logic elements includes N memory cells. A predetermined one of the N memory cells forms part of a memory slice, wherein at least a portion of each slice of the programmable logic device is allocated to either configuration data or user data memory. Typically, one memory slice provides one configuration of the programmable logic device. In accordance with one embodiment, a memory access port is coupled between at least one of the N memory cells and either one configurable element or the interconnect, thereby facilitating loading of new configuration data into other memory slices during the one configuration.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: September 28, 1999
    Assignee: Xilinx, Inc.
    Inventors: Stephen M. Trimberger, Richard A. Carberry, Robert Anders Johnson, Jennifer Wong
  • Patent number: 5933025
    Abstract: A low voltage interface circuit with a high voltage tolerance enables devices with different power supply levels to be efficiently coupled together without significant leakage current or damage to the circuits. One embodiment of the present invention comprises a tri-state control circuit, a data path, a reference voltage circuit, and an isolation circuit. The interface circuit provides a high impedance receive mode. In this mode, when a voltage is applied to the I/O pin of the interface circuit which is sufficiently greater than the interface circuit power supply voltage, the isolation circuit isolates the power supply from the I/O pin. The interface circuit also protects all of the transistors from gate to bulk, gate to source and gate to drain voltage drops of greater than a specified voltage, for example 3.6V for a nominal 3V power supply when up to 5.5V is being externally applied to the I/O pin.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: August 3, 1999
    Assignee: Xilinx, Inc.
    Inventors: Scott S. Nance, Mohammad R. Tamjidi, Richard C. Li, Jennifer Wong, Hassan K. Bazargan