Patents by Inventor Jens Hofrichter

Jens Hofrichter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10886249
    Abstract: A surface treatment solution includes a fluoride source; a first solvent; and a water transforming agent to transform water produced during wafer surface treatment into a second solvent, which can be the same as, or different from, the first solvent. The solution can be used, for example, in surface preparation for wafers having a backend including an electrical interconnect that includes aluminum or an aluminum alloy.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: January 5, 2021
    Assignee: ams International AG
    Inventor: Jens Hofrichter
  • Patent number: 10763380
    Abstract: The photodetector device comprises a substrate (1) of semiconductor material, a sensor region (2) in the substrate, a plurality of grid elements (4) arranged at a distance (d) from one another above the sensor region, the grid elements having a refractive index, a region of lower refractive index (3), the grid elements being arranged on the region of lower refractive index, and a further region of lower refractive index (5) covering the grid elements.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: September 1, 2020
    Assignee: ams AG
    Inventors: Jens Hofrichter, Jan Enenkel
  • Publication number: 20200176343
    Abstract: The package comprises a carrier, an electronic device arranged on the carrier, a shield arranged on the electronic device on a side facing away from the carrier, and an absorber film comprising nanomaterial applied on or above the shield.
    Type: Application
    Filed: June 13, 2018
    Publication date: June 4, 2020
    Inventors: Jens Hofrichter, Guy MEYNANTS, Josef PERTL, Thomas Troxler
  • Publication number: 20200168657
    Abstract: The assembly comprises a semiconductor device with an active-pixel array, a readout circuit chip or plurality of readout circuit chips mounted outside the active-pixel array, the readout circuit chip or plurality of readout circuit chips being configured to read out voltages or currents provided by the active-pixel array, and electric connections between the active-pixel array and the readout circuit chip or plurality of readout circuit chips.
    Type: Application
    Filed: July 26, 2018
    Publication date: May 28, 2020
    Inventors: Thomas Froehlich, Michael Leitner, Thomas Troxler, Josef PERTL, Dominik Hollinger, Thomas Mueller, Andreas Fitzi, Jens Hofrichter
  • Patent number: 10644047
    Abstract: A top surface of a substrate is provided with a detection element for detecting electromagnetic radiation. A refractive element is formed by a portion of a cover element, which is attached to the substrate, so that the refractive element is arranged facing the detection element. The refractive element may be arranged within a recess of the cover element, so that a cavity is formed between the detection element and the refraction element.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: May 5, 2020
    Assignee: ams AG
    Inventors: Jens Hofrichter, Franz Schrank, Joerg Siegert
  • Publication number: 20200124748
    Abstract: The semiconductor device comprises a substrate of semiconductor material having a main surface, an integrated circuit in the substrate, a photodetector element or array of photodetector elements arranged at or above the main surface, and at least one nanomaterial film arranged above the main surface. At least part of the nanomaterial film has a scintillating property. The method of production includes the use of a solvent to apply the nanomaterial film, in particular by inject printing, by silk-screen printing, by spin coating or by spray coating.
    Type: Application
    Filed: April 19, 2018
    Publication date: April 23, 2020
    Inventors: Jens Hofrichter, Guy MEYNANTS, Josef PERTL, Thomas Troxler
  • Publication number: 20190319156
    Abstract: The photodiode device comprises a substrate (1) of semiconductor material with a main surface (10), a plurality of doped wells (3) of a first type of conductivity, which are spaced apart at the main surface (10), and a guard ring (7) comprising a doped region of a second type of conductivity, which is opposite to the first type of conductivity. The guard ring (7) surrounds an area of the main surface (10) including the plurality of doped wells (3) without dividing this area. Conductor tracks (4) are electrically connected with the doped wells (3), which are thus interconnected, and further conductor tracks (5) are electrically connected with a region of the second type of conductivity. A doped surface region (2) of the second type of conductivity is present at the main surface (10) and covers the entire area between the guard ring (7) and the doped wells (3).
    Type: Application
    Filed: November 28, 2017
    Publication date: October 17, 2019
    Inventors: Gerald Meinhardt, Ewald WACHMANN, Martin Sagmeister, Jens Hofrichter
  • Publication number: 20190237429
    Abstract: A surface treatment solution includes a fluoride source; a first solvent; and a water transforming agent to transform water produced during wafer surface treatment into a second solvent, which can be the same as, or different from, the first solvent. The solution can be used, for example, in surface preparation for wafers having a backend including an electrical interconnect that includes aluminum or an aluminum alloy.
    Type: Application
    Filed: April 30, 2018
    Publication date: August 1, 2019
    Inventor: Jens Hofrichter
  • Publication number: 20190198686
    Abstract: The photodetector device comprises a substrate (1) of semiconductor material, a sensor region (2) in the substrate, a plurality of grid elements (4) arranged at a distance (d) from one another above the sensor region, the grid elements having a refractive index, a region of lower refractive index (3), the grid elements being arranged on the region of lower refractive index, and a further region of lower refractive index (5) covering the grid elements.
    Type: Application
    Filed: June 13, 2017
    Publication date: June 27, 2019
    Inventors: Jens Hofrichter, Jan Enenkel
  • Publication number: 20190035835
    Abstract: A top surface of a substrate is provided with a detection element for detecting electromagnetic radiation. A refractive element is formed by a portion of a cover element, which is attached to the substrate, so that the refractive element is arranged facing the detection element. The refractive element may be arranged within a recess of the cover element, so that a cavity is formed between the detection element and the refraction element.
    Type: Application
    Filed: December 15, 2016
    Publication date: January 31, 2019
    Inventors: Jens HOFRICHTER, Franz SCHRANK, Joerg SIEGERT
  • Patent number: 10132999
    Abstract: Embodiments are directed to a method of forming an optical coupler system. The method includes forming at least one waveguide over a substrate, and forming a sacrificial optical coupler in a first region over the substrate. The method further includes configuring the sacrificial optical coupler to couple optical signals to or from the at least one waveguide, and forming a v-groove in the first region over the substrate, wherein forming the v-groove includes removing the sacrificial optical coupler from the first region.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: November 20, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tymon Barwicz, William M. J. Green, Jens Hofrichter, Marwan H. Khater, Jessie C. Rosenberg
  • Publication number: 20180275344
    Abstract: Embodiments are directed to a method of forming an optical coupler system. The method includes forming at least one waveguide over a substrate, and forming a sacrificial optical coupler in a first region over the substrate. The method further includes configuring the sacrificial optical coupler to couple optical signals to or from the at least one waveguide, and forming a v-groove in the first region over the substrate, wherein forming the v-groove includes removing the sacrificial optical coupler from the first region.
    Type: Application
    Filed: May 30, 2018
    Publication date: September 27, 2018
    Inventors: Tymon Barwicz, William M.J. Green, Jens Hofrichter, Marwan H. Khater, Jessie C. Rosenberg
  • Patent number: 9995895
    Abstract: The present invention is directed to a photonic circuit device for optical gain measurement, including: a substrate with a photonic circuit; an active gain section; at least two light couplers arranged such that at least a part of the active gain section is between the light couplers; and a partial reflector arranged to reflect light propagating along the same direction back to a center of the gain section, and wherein the device does not include any other reflector opposite to the partial reflector with respect to the active gain section and configured to reflect light back to the center of the gain section. The present invention is further directed to related gain measurement methods.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: June 12, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Jens Hofrichter
  • Patent number: 9989703
    Abstract: A semiconductor structure and a method for manufacturing the semiconductor structure are provided. The semiconductor structure includes a processed semiconductor substrate. The processed semiconductor substrate includes active electronic components. The semiconductor structure also includes a dielectric layer that covers, at least partially, the processed semiconductor substrate. An interface layer that is suitable for growing optically active material on the interface layer is bonded to the dielectric layer. An optical gain layer and the processed semiconductor substrate are connected through the dielectric layer by electric and/or optical contacts.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: June 5, 2018
    Assignee: International Business Machines Corporation
    Inventors: Lukas Czornomaz, Jean Fompeyrine, Jens Hofrichter, Bert Jan Offrein, Mirja Richter
  • Patent number: 9864134
    Abstract: A semiconductor structure and a method for manufacturing the semiconductor structure are provided. The semiconductor structure includes a processed semiconductor substrate. The processed semiconductor substrate includes active electronic components. The semiconductor structure also includes a dielectric layer that covers, at least partially, the processed semiconductor substrate. An interface layer that is suitable for growing optically active material on the interface layer is bonded to the dielectric layer. An optical gain layer and the processed semiconductor substrate are connected through the dielectric layer by electric and/or optical contacts.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: January 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Lukas Czornomaz, Jean Fompeyrine, Jens Hofrichter, Bert Jan Offrein, Mirja Richter
  • Publication number: 20180003896
    Abstract: Embodiments are directed to a method of forming an optical coupler system. The method includes forming at least one waveguide over a substrate, and forming a sacrificial optical coupler in a first region over the substrate. The method further includes configuring the sacrificial optical coupler to couple optical signals to or from the at least one waveguide, and forming a v-groove in the first region over the substrate, wherein forming the v-groove includes removing the sacrificial optical coupler from the first region.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Tymon Barwicz, Jens Hofrichter, Marwan H. Khater, Jessie C. Rosenberg, William M.J. Green
  • Patent number: 9823414
    Abstract: A semiconductor device for use in an optical application and a method for fabricating the device. The device includes: an optically passive aspect that is operable in a substantially optically passive mode; and an optically active material having a material that is operable in a substantially optically active mode, wherein the optically passive aspect is patterned to include a photonic structure with a predefined structure, and the optically active material is formed in the predefined structure so as to be substantially self-aligned in a lateral plane with the optically passive aspect.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: November 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lukas Czornomaz, Jens Hofrichter, Mirja Richter, Heike E. Riel
  • Patent number: 9742150
    Abstract: An optical amplifier device includes: an optical waveguide core; an active gain material layer stack; and a dielectric material between the active gain material layer stack and the optical waveguide core. The optical waveguide core includes an input portion, a middle portion, an output portion and tapers. The middle portion is connected to the input and output portions via the tapers. The tapers widen outwardly, whereby the middle portion has an effective refractive index that is smaller than an effective refractive index of any of the input and output portions. The active gain material layer stack includes III-V semiconductor material layers having different refractive indices so as to possess an effective refractive index that is larger than the effective refractive index of the middle portion. The active gain material layer stack extends relative to a subsection of the optical waveguide core that includes the middle portion and tapers.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: August 22, 2017
    Assignee: International Business Machines Corporation
    Inventors: Jens Hofrichter, Folkert Horst
  • Patent number: 9678273
    Abstract: A device for propagating light is described, comprising: a substrate having a semiconductor material, an insulating layer, wherein the insulating layer is arranged on the substrate, a recess reaching through the insulating layer and into the substrate, wherein the recess is at least partially filled with a filler material, and a waveguide arranged in or on the filler material.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: June 13, 2017
    Assignee: International Business Machines Corporation
    Inventors: Jens Hofrichter, Daniel S. Jubin, Edward W. Kiewra, Antonio La Porta
  • Patent number: 9658414
    Abstract: An apparatus includes an optical adaptor having monolithically integrated optical elements and first micro-mechanical features, the latter defining at least a first horizontal reference surface and a first vertical reference surface; wherein the first horizontal reference surface is perpendicular to an optical plane, the latter being perpendicular the optical axis of the optical elements; and wherein the first vertical reference surface is perpendicular to the first horizontal reference surface and parallel to the optical axis.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: May 23, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jens Hofrichter, Folkert Horst, Antonio La Porta, Bert J. Offrein, Ibrahim Murat Soganci