Patents by Inventor Jens Troetzschel

Jens Troetzschel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140008121
    Abstract: One aspect relates to a method for producing an electrical bushing for an implantable device, an electrical bushing, and an implantable device. The method according to one embodiment includes forming a base body from a ceramic slurry and introducing a bushing conductor made of a metal or cermet material with a metal fraction into the base body. The metal fraction in the bushing conductor is provided to decrease towards the base body. It includes sintering the green blank that includes the base body and the bushing conductor.
    Type: Application
    Filed: September 10, 2013
    Publication date: January 9, 2014
    Applicant: Heraeus Precious Metals GmbH & Co. KG
    Inventors: Jens Troetzschel, Goran Pavlovic, Harald Manhardt, Nicole Staudt
  • Publication number: 20130299233
    Abstract: One aspect relates to an electrical bushing for an implantable device including an electrically insulating base body and at least one electrically conductive bushing body that is embedded in at least one bushing opening that extends through the base body. The base body is produced from a sintered ceramic material, characterized in that the at least one bushing body is made of a sintered cermet material or a sintered metallic material. The base body and the at least one bushing body comprise a firmly bonded sintered connection.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Inventors: Jens Troetzschel, Goran Pavlovic, Harald Manhardt, Norbert Wollenberg, Nicole Guebler
  • Patent number: 8528201
    Abstract: One aspect relates to a method for producing an electrical bushing for an implantable device, an electrical bushing, and an implantable device. The method according to one embodiment includes forming a base body from a ceramic slurry and introducing a bushing conductor made of a metal powder, metal slurry, cermet powder and/or cermet slurry into the base body. The metal fraction in the bushing conductor is provided to decrease towards the base body. It includes sintering the green blank that includes the base body and the bushing conductor.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: September 10, 2013
    Assignee: W. C. Heraeus GmbH
    Inventors: Jens Troetzschel, Goran Pavlovic, Harald Manhardt, Nicole Guebler
  • Patent number: 8494635
    Abstract: One aspect relates to a method for producing an electrical bushing for an implantable device, a corresponding electrical bushing, and a corresponding implantable device. The method according to one embodiment is characterized in that a green blank is produced and sintered from an electrically insulating base body green blank made of a ceramic slurry or powder and at least one electrically conductive bushing body green blank made of a cermet material. The at least one bushing body green blank is inserted into a bushing opening of the base body green blank to form a composite green blank, a shape of the at least one bushing body green blank and a shape of the at least one bushing opening are complementary to each other at least in sections thereof and prevent slippage of the bushing body green blank through the bushing opening. The composite green blank is sintered while applying a force that keeps the bodies together.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 23, 2013
    Assignee: W. C. Heraeus GmbH
    Inventors: Jens Troetzschel, Goran Pavlovic, Harald Manhardt, Norbert Wollenberg, Nicole Guebler
  • Publication number: 20130166019
    Abstract: The present invention relates to a medical device or implant made at least in part of a high strength, low modulus metal alloy comprising Niobium, Tantalum, and at least one element selected from the group consisting of Zirconium, Tungsten, and Molybdenum. The medical devices according to the present invention provide superior characteristics with regard to bio-compatibility, radio-opacity and MRI compatibility.
    Type: Application
    Filed: February 21, 2013
    Publication date: June 27, 2013
    Inventors: Hans Jurgen Wachter, Jens Trötzschel, Randolf Von Oepen
  • Patent number: 8414679
    Abstract: One aspect is a method for producing an alloy, whereby the alloy includes at least a first metal and a second metal, whereby firstly a powder metallurgical route and subsequently a melt metallurgical route is used sequentially in order to generate the alloy from the, at least, first metal and the second metal. The method includes grinding the first metal into a first metal powder, grinding the second metal into a second metal powder, mixing the first metal powder and the second metal powder to produce a blended powder, generating a blended body from the blended powder by the powder metallurgical route, and generating the alloy by melting the blended body by the melt metallurgical route.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: April 9, 2013
    Assignee: W. C. Heraeus GmbH
    Inventors: Herwig Schiefer, Christoph Vogt, Heiko Specht, Jens Troetzschel
  • Patent number: 8403980
    Abstract: The present invention relates to a medical device or implant made at least in part of a high strength, low modulus metal alloy comprising Niobium, Tantalum, and at least one element selected from the group consisting of Zirconium, Tungsten, and Molybdenum. The medical devices according to the present invention provide superior characteristics with regard to bio-compatibility, radio-opacity and MRI compatibility.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: March 26, 2013
    Assignees: Heraeus Materials Technology GmbH & Co. KG, Abbott Ireland
    Inventors: Hans Jurgen Wachter, Jens Trötzschel, Randolf Von Oepen
  • Patent number: 8394170
    Abstract: One aspect is a method for producing an alloy, whereby the alloy consists of a first metal, a second metal, a third metal, and a fourth metal, and the first metal, the second metal, the third metal, and the fourth metal are selected from the group consisting of the metals, niobium, zirconium, tantalum tungsten. The method includes the steps of grinding the first metal to form a first metal powder and grinding the second metal to form a second metal powder; mixing the first metal powder and the second metal powder to form a first blended powder; generating a first blended body from the blended powder by a powder metallurgical route; and generating the alloy by melting the first blended body and the remaining metals by a melt metallurgical route.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: March 12, 2013
    Assignee: W. C. Heraeus GmbH
    Inventors: Herwig Schiefer, Christoph Vogt, Heiko Specht, Jens Troetzschel
  • Patent number: 8349249
    Abstract: The present invention relates to a medical device or implant made at least in part of a high strength, low modulus metal alloy comprising Niobium, Tantalum, and at least one element selected from the group consisting of Zirconium, Tungsten and Molybdenum. The medical devices according to the present invention provide superior characteristics with regard to biocompatibility, radio-opacity and MRI compatibility.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: January 8, 2013
    Assignees: Heraeus Precious Metals GmbH & Co. KG, Abbott Ireland
    Inventors: Jürgen Wachter, Jens Trötzschel, Randolf Von Oepen
  • Publication number: 20120330390
    Abstract: The present invention relates to a medical device or implant made at least in part of a high-strength, low-modulus metal alloy comprising niobium, tantalum, and at least one element selected from the group consisting of zirconium, tungsten, and molybdenum. The medical devices according to the present invention provide superior characteristics with regard to biocompatibility, radio-opacity and MRI compatibility.
    Type: Application
    Filed: May 25, 2012
    Publication date: December 27, 2012
    Applicant: HERAEUS PRECIOUS METALS GMBH & CO. KG
    Inventors: Jürgen Wachter, Jens Trötzschel
  • Publication number: 20120231048
    Abstract: The present invention relates to a medical device or implant made at least in part of a high-strength, low-modulus metal alloy comprising niobium, tantalum, and at least one element selected from the group consisting of zirconium, tungsten, and molybdenum. The medical devices according to the present invention provide superior characteristics with regard to biocompatibility, radio-opacity and MRI compatibility.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 13, 2012
    Applicant: HERAEUS PRECIOUS METALS GMBH & CO. KG
    Inventors: Jürgen WACHTER, Jens TRÖTZSCHEL, Randolf VON OEPEN
  • Publication number: 20120203294
    Abstract: One aspect relates to an electrical bushing for use in a housing of an implantable medical device. The electrical bushing includes at least one electrically insulating base body and at least one electrical conducting element. The conducting element is set-up to establish, through the base body, at least one electrically conductive connection between an internal space of the housing and an external space. The conducting element is hermetically sealed with respect to the base body. The at least one conducting element includes at least one cermet. The at least one conducting element has a cross-section, a length, and a resistivity which provide the electrically conductive connection to have an ohmic series resistance of less than or equal to 1 Ohm. One aspect also relates to and implantable medical device and a use of at least one cermet-comprising conducting element in an electrical bushing for an implantable medical device.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 9, 2012
    Applicant: HERAEUS PRECIOUS METALS GMBH & CO. KG
    Inventor: Jens Troetzschel
  • Publication number: 20120193118
    Abstract: One aspect relates to an electrical bushing for use in a housing of an active implantable medical device, whereby the electrical bushing includes at least one electrically insulating base body and at least one electrical conducting element, whereby the conducting element establishes, through the base body, at least one electrically conductive connection between an internal space of the housing and an external space, whereby the conducting element is hermetically sealed with respect to the base body, and whereby the at least one conducting element includes at least one cermet. One aspect provides the base body to include a contact region, whereby the base body can be connected to the housing in a firmly bonded manner by means of the contact region.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 2, 2012
    Applicant: HERAEUS PRECIOUS MATERIALS GMBH & CO. KG
    Inventors: Mark Kempf, Jens Troetzschel
  • Publication number: 20110308957
    Abstract: One aspect is a method for the production of a three-dimensional structure of successive layers producing a multitude of successive layers wherein, with the exception of a first layer, each of the successive layers is arranged on a preceding layer. Each of the successive layers includes at least two materials wherein one material is a sacrificial material and one material is a structure material. Each of the successive layers defines a successive cross-section through the three-dimensional structure. Producing each of the layers includes depositing the sacrificial material by means of an electrochemical process and depositing the structure material by means of physical gas phase deposition. After a multitude of successive layers has been produced, the three-dimensional structure is uncovered by removing at least a part of the sacrificial material. The sacrificial material is at least one of a group consisting of nickel, silver, palladium, and gold.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 22, 2011
    Applicant: W. C. HERAEUS GMBH
    Inventors: Heiko Specht, Andreas Reisinger, Ulrich Hausch, Frank Krueger, Jens Troetzschel
  • Publication number: 20110264161
    Abstract: One aspect relates to a method for producing an alloy, whereby the alloy consists of three metals and the three metals are selected from the group consisting of tantalum, tungsten, and niobium. The method according to one embodiment is characterized by a) grinding the tantalum to form a tantalum powder and grinding the tungsten to form a tungsten powder; b) mixing the tantalum powder and the tungsten powder to form a blended powder, whereby the weight fraction of tungsten powder in the blended powder is larger than in the desired alloy; c) producing a blended body from the blended powder by means of a powder metallurgical route; d) producing a pre-alloy by means of a first melting of the blended body and at least a fraction of at least one further metal by means of a melt metallurgical route; and e) producing the alloy by means of a second melting of the pre-alloy and the remaining fraction of at least one metal by means of a melt metallurgical route.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 27, 2011
    Applicant: W. C. HERAEUS GMBH
    Inventors: Herwig Schiefer, Christoph Vogt, Heiko Specht, Jens Troetzschel, Egbert Stiedl
  • Publication number: 20110190885
    Abstract: One aspect relates to a method for producing an electrical bushing for an implantable device, a corresponding electrical bushing, and a corresponding implantable device. The method according to one embodiment is characterized in that a green blank is produced and sintered from an electrically insulating base body green blank made of a ceramic slurry or powder and at least one electrically conductive bushing body green blank made of a cermet material. The at least one bushing body green blank is inserted into a bushing opening of the base body green blank to form a composite green blank, a shape of the at least one bushing body green blank and a shape of the at least one bushing opening are complementary to each other at least in sections thereof and prevent slippage of the bushing body green blank through the bushing opening. The composite green blank is sintered while applying a force that keeps the bodies together.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 4, 2011
    Applicant: W. C. HERAEUS GMBH
    Inventors: Jens Troetzschel, Goran Pavlovic, Harald Manhardt, Norbert Wollenberg, Nicole Guebler
  • Publication number: 20110186349
    Abstract: One aspect relates to a method for producing an electrical bushing for an implantable device, an electrical bushing, and an implantable device. The method according to one embodiment includes forming a base body from a ceramic slurry and introducing a bushing conductor made of a metal powder, metal slurry, cermet powder and/or cermet slurry into the base body. The metal fraction in the bushing conductor is provided to decrease towards the base body. It includes sintering the green blank that includes the base body and the bushing conductor.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 4, 2011
    Applicant: W. C. HERAEUS GMBH
    Inventors: Jens Troetzschel, Goran Pavlovic, Harald Manhardt, Nicole Guebler
  • Publication number: 20110129386
    Abstract: One aspect discloses a method for producing an alloy, whereby the alloy consists of a first metal, a second metal, a third metal, and a fourth metal, and the first metal, the second metal, the third metal, and the fourth metal are selected from the group consisting of the metals, niobium, zirconium, tantalum, and tungsten, and the method includes the steps of a) grinding the first metal to form a first metal powder and grinding the second metal to form a second metal powder; b) mixing the first metal powder and the second metal powder to form a first blended powder; c) generating a first blended body from the blended powder by means of a powder metallurgical route; d) generating the alloy by melting the first blended body and the remaining metals by means of a melt metallurgical route.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 2, 2011
    Applicant: W. C. HERAEUS GMBH
    Inventors: Herwig Schiefer, Christoph Vogt, Heiko Specht, Jens Troetzschel
  • Publication number: 20110034966
    Abstract: One aspect relates to an electrical bushing for an implantable medical device, having an annulus-like holding element for holding the electrical bushing in the implantable medical device, whereby the holding element includes a through-opening, at least one elongated conducting wire extends through the through-opening, and an insulation element for forming a hermetic seal between the holding element and the conducting wire is arranged in the through-opening. One aspect provides for a cermet-containing bearing element to be arranged between the insulation element and the conducting wire.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 10, 2011
    Applicant: W. C. HERAEUS GMBH
    Inventors: Jens Troetzschel, Heiko Specht
  • Publication number: 20110034965
    Abstract: One aspect relates to an electrical bushing for an implantable medical device, having an annulus-like holding element for holding the electrical bushing in the implantable medical device, whereby the holding element includes a through-opening, at least one elongated conduction element extends through the through-opening, and an insulation element for forming a hermetic seal between the holding element and the conduction element is arranged in the through-opening. One aspect provides for the at least one conduction element to include a cermet.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 10, 2011
    Applicant: W. C. HERAEUS GMBH
    Inventors: Jens Troetzschel, Heiko Specht