Patents by Inventor Jente B. Kuang

Jente B. Kuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080122490
    Abstract: A circular edge detector on an integrated circuit including a plurality of edge detector cells, each of the plurality of edge detector cells having an input select block operable to receive a data signal and a previous cell signal and to generate a present cell signal, and a state capture block operably connected to receive the present cell signal. The present cell signal of each of the plurality of edge detector cells is provided to a next of the plurality of edge detector cells as the previous cell signal for the next of the plurality of edge detector cells, and the present cell signal from a last edge detector cell is provided to a first edge detector cell as the previous cell signal for the first edge detector cell.
    Type: Application
    Filed: November 28, 2006
    Publication date: May 29, 2008
    Inventors: Jerry C. Kao, Jente B. Kuang, Alan J. Drake, Gary D. Carpenter, Fadi H. Gebara
  • Publication number: 20080116938
    Abstract: A dynamic logic gate has a dynamic node pre-charged in response to a pre-charge phase of a clock signal and a logic tree with a plurality of logic inputs for evaluating the dynamic node during an evaluate phase of the clock signal in response to a Boolean combination of the logic inputs. The dynamic node is coupled to an output with an inverting logic circuit. A hybrid keeper circuit, coupled to the dynamic node, uses a parallel NFET and a first PFET to produce the same current as a larger PFET when operated with a high voltage power supply. The common node of the combination is coupled to the dynamic node by second PFET larger than the first PFET in one embodiment. At high voltage, the hybrid keeper provides a strong keeper current when potential noise is highest. The hybrid keeper current is automatically reduced at low voltage allowing performance to be maintained while keeping the effective noise immunity of the high voltage operation.
    Type: Application
    Filed: November 16, 2006
    Publication date: May 22, 2008
    Inventors: Hung C. Ngo, Peter Juergen Klim, Jente B. Kuang, Jethro C. Law, Trong V. Luong, Abraham Mathews
  • Publication number: 20080115019
    Abstract: An in-circuit timing monitor having a selectable-path ring oscillator circuit provides delay and performance measurements in an actual circuit environment. A test mode signal is applied to a digital circuit to de-select a given functional input signal applied to a functional logic block within the digital circuit and replace it with feedback coupled from an output of the functional logic block, when test mode operation is selected. The signal path from the de-selected input to the output is selected so that the signal path will oscillate, and a characteristic frequency or phase of the output signal is measured to determine the delay. Other inputs to the functional logic block are set to a predetermined set of logic values. The selection may be made at a register preceding the digital inputs or made in the first level of logic of the functional logic block.
    Type: Application
    Filed: November 14, 2006
    Publication date: May 15, 2008
    Inventors: Hung C. Ngo, Gary D. Carpenter, Alan J. Drake, Jente B. Kuang
  • Patent number: 7372305
    Abstract: A scannable latch incorporates a logic front end that has at least one dynamic logic gate that has a logic tree that perform the normal Boolean logic operation. The dynamic logic gate is combined a scan pull-down logic tree that is coupled to a scan hold latch output and to the dynamic node of the dynamic logic gate. A scan clock and a normal clock determine whether the logic circuitry is in the normal logic mode or in the scan test mode. A static output latch has at least one input that is responsive logic state of a dynamic node. The evaluated state of the dynamic node is set by either the logic tree of the dynamic logic gate or the scan pull-down logic tree of the scan circuitry in response to the logic state of the scan clock or the normal clock.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 13, 2008
    Assignee: International Business Machines Corporation
    Inventors: Hung C. Ngo, Jente B. Kuang, James D. Warnock, Dieter F. Wendel
  • Publication number: 20080100360
    Abstract: In an exemplary embodiment of the present invention, a local clock buffer (LCB) fabricated in a semiconductor receives a global clock signal as input. The LCB implements a pulse width controller that is operationally coupled to the LCB and an output driver forming a ring oscillator. The output driver outputs a pulse width adjusted signal. The pulse width of the pulse width adjusted signal is adjustable by way of the pulse width controller and is related in frequency to the global clock signal. A second ring oscillator (also referred to as the nclk loop) can also be implemented to server as the global clock signal. The pulse width controller can be used to precisely adjust the pulse width of the pulse width adjusted signal. A pulse width multiplier can be implemented to allow direct observation and measurement of the pulse width of the pulse width adjusted signal.
    Type: Application
    Filed: October 26, 2006
    Publication date: May 1, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hung C. Ngo, Jente B. Kuang, James D. Warnock, Dieter F. Wendel
  • Publication number: 20080100344
    Abstract: A scannable latch incorporates a logic front end that has at least one dynamic logic gate that has a logic tree that perform the normal Boolean logic operation. The dynamic logic gate is combined a scan pull-down logic tree that is coupled to a scan hold latch output and to the dynamic node of the dynamic logic gate. A scan clock and a normal clock determine whether the logic circuitry is in the normal logic mode or in the scan test mode. A static output latch has at least one input that is responsive logic state of a dynamic node. The evaluated state of the dynamic node is set by either the logic tree of the dynamic logic gate or the scan pull-down logic tree of the scan circuitry in response to the logic state of the scan clock or the normal clock.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Hung C. Ngo, Jente B. Kuang, James D. Warnock, Dieter F. Wendel
  • Publication number: 20080101522
    Abstract: A programmable clock generator circuit receives control signals and a global clock and generates a pulsed data clock and a scan clock in response to gating signals. The clock generator has data clock and scan clock feed-forward paths and a single feedback path. Delay control signals program delay elements in the feedback path and logic gates reshape and generate a feedback clock signal. The global clock and the feedback clock signal are combined to generates a pulsed local clock signal. A scan clock feed-forward circuit receives the local clock and generates the scan clock. A data clock feed-forward circuit receives the local clock and generates the data clock with a logic controlled delay relative to the local clock signal. The feedback clock is generated with controlled delay thereby modifying the pulse width of the data and scan clocks independent of the controlled delay of the data clock feed-forward path.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Hung C. Ngo, Jente B. Kuang, James D. Warnock, Dieter F. Wendel
  • Patent number: 7349271
    Abstract: A cascaded test circuit with inter-bitline drive devices for evaluating memory cell performance provides for circuit delay and performance measurements in an actual memory circuit environment. A row in a memory array is enabled along with a set of drive devices that couple each bitline pair to the next in complement fashion to form a cascade of memory cells. The drive devices can be inverters and the inverters can be sized to simulate the bitline read pre-charge device and the write state-forcing device so that the cascade operates under the same loading/drive conditions as the operational with memory cell read/write circuits. The last and first bitline in the row can be cascaded, providing a ring oscillator or the delay of the cascade can be measured in response to a transition introduced at the head of the cascade. Weak read and/or weak write conditions can be measured by selective loading.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: March 25, 2008
    Assignee: International Business Machines Corporation
    Inventors: Jente B. Kuang, Jerry C. Kao, Hung Cai Ngo, Kevin J. Nowka
  • Patent number: 7323908
    Abstract: A cascaded pass-gate test circuit including interposed split-output drive devices provides accurate measurement of critical timing parameters of pass gates. The rise time and fall time of signals passed through the pass gate can be separately measured in a ring oscillator or one-shot delay line configuration. Inverters or other buffer circuits are provided as drive devices to couple the pass gates in cascade. The final complementary tree in each drive device is split so that the only one of the output pull-down transistor or pull-up transistor is connected to the next pass gate input, while the other transistor is connected to the output of the pass gate. The result is that the state transition associated with the device connected to the pass gate input is dominant in the delay, while the other state transition is propagated directly to the output of the pass gate, bypassing the pass gate.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: January 29, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ching-Te Chuang, Jente B. Kuang, Hung C. Ngo
  • Patent number: 7298176
    Abstract: A dynamic logic gate has an asymmetrical dual-gate PFET device for charging a dynamic node during a pre-charge phase of a clock. A logic tree evaluates the dynamic node during an evaluate phase of the clock. The front gate of the asymmetrical dual-gate PFET device is coupled to the clock signal and the back gate is coupled to the ground potential of the power supply. When the clock is a logic zero both the front gate and the back gate are biased ON and the dynamic node charges with maximum current. The clock signal transitions to a logic one during the evaluation phase of the clock turning OFF the front gate. The back gate remains ON and the asymmetrical dual-gate PFET device operates as a keeper device with a current level sufficient to counter leakage on the dynamic node.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: November 20, 2007
    Assignee: International Business Machines Corporation
    Inventors: Hung C. Ngo, Ching-Te Chuang, Keunwoo Kim, Jente B. Kuang, Kevin J. Nowka
  • Patent number: 7288975
    Abstract: A method and apparatus for fail-safe and restartable system clock generation provides recovery from failures due to incorrect clock generator settings or from marginal clock distribution components. Clock failure is detected at a point along the clock distribution path between the output of the clock generator and the downstream circuits. If a clock failure is detected, a second clock, which may be the clock generator reference clock, is used to operate the downstream circuits. The clock generator, which may be a phase-lock loop, is then restarted, either with a predetermined loop filter voltage at which downstream circuits are guaranteed to operate, or with a divider setting on the output of the clock generator that reduces the frequency so that downstream circuits are guaranteed to operate. Parameters of the clock generator can thereby be reset and operating conditions determined before restoring the output of the clock generator to the downstream circuits.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Hung C. Ngo, Gary D. Carpenter, Fadi H. Gebara, Jente B. Kuang
  • Patent number: 7276932
    Abstract: Virtual power-gated cells (VPC) are configured with control circuitry for buffering control signals and a power-gated block (PGB) comprising two or more NFETs for virtual ground rail nodes and PFETs for virtual positive rail nodes. Each VPC has a control voltage input, a control voltage output, a node coupled to a power supply voltage potential, and a virtual power-gated node that is coupled and decoupled from the power supply potential in response to logic states on the control input. The control signals are buffered by non-power-gated inverters before being applied to the input of a PGB. VPCs may propagate a control signal that is in phase with or inverted from a corresponding control signal at the control input. VPCs may be cascaded to create virtual power rails in chains and power grids. The control signals are latched at the cell boundaries or latched in response to a clock signal.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: October 2, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jente B. Kuang, Jethro C. Law, Hung C. Ngo, Kevin J. Nowka
  • Patent number: 7266707
    Abstract: A low power consumption pipeline circuit architecture has power partitioned pipeline stages. The first pipeline stage is non-power-gated for fast response in processing input data after receipt of a valid data signal. A power-gated second pipeline stage has two power-gated modes. Normally the power rail in the power-gated second pipeline stage is charged to a first voltage potential of a pipeline power supply. In the first power gated mode, the power rail is charged to a threshold voltage below the first voltage potential to reduce leakage. In the second power gated mode, the power rail is decoupled from the first voltage potential. A power-gated third pipeline stage has its power rail either coupled to the first voltage potential or power-gated where its power rail is decoupled from the first voltage potential. The power rail of the second power-gated pipeline stage charges to the first voltage potential before the third power-gated pipeline stage.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: September 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: Hung C. Ngo, Jente B. Kuang, Kevin J. Nowka, Rajiv V. Joshi
  • Patent number: 7061265
    Abstract: Leakage current in logic circuitry is managed by coupling and decoupling the voltage potentials of the power supply from circuitry with large high leakage devices. Driver circuits comprise a low leakage logic path for holding logic states of the output. A high leakage logic path in parallel with the low leakage logic path is used to assert each logic state in the forward direction from input to output. The large output device in each high leakage path that enhances the current drive of a logic state on the output are leakage stress relieved by allowing their drive inputs to collapse after the output logic state has been asserted. The high leakage logic paths employ multiple stages with collapsing logic states that are generated in response to asserted logic states on the output and logic states of the low leakage logic path thus reducing the device sizes needed to control leakage.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: June 13, 2006
    Assignee: International Business Machines Corporation
    Inventors: Hung C. Ngo, Jente B. Kuang, Kevin J. Nowka
  • Patent number: 7046063
    Abstract: CMOS circuitry is partitioned into first and second logic circuit domains. The first logic circuit domain may be optionally a cuttable domains (C_Domains) where circuitry has power supply gating to reduce leakage power and non-cuttable domains (NC_Domains) where circuitry does not have power supply gating. Each output that couples signals from one logic circuit domain to another logic circuit is interfaced with a C_driver and a S_keeper which automatically assure that the output state is held when circuitry is power-gated put to reduce leakage power. The S_keeper and C_driver have low leakage circuits that maintain signal states and are not used for high speed operation.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: May 16, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jente B. Kuang, Hung C. Ngo, Kevin J. Nowka
  • Patent number: 6980018
    Abstract: A buffer/driver having large output devices for driving multiple loads is configured with three parallel paths. The first logic path is made of small devices and is configured to provide the logic function of the buffer without the ability to drive large loads. Second and third logic paths have the logic function of the first logic path up to the last inverting stage. The last inverting stage in each path is a single device for driving the logic states of the buffer output. The second and third logic paths have power-gating that allows the input to the pull-up and pull-down devices to float removing gate-leakage voltage stress. When the second and third logic paths are power-gated, the first logic path provides a keeper function to hold the logic state of the buffer output. The buffer may be an inverter, non-inverter, or provide a multiple input logic function.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: December 27, 2005
    Assignee: Internatiional Business Machines Corporation
    Inventors: Hung C. Ngo, Jente B. Kuang, Kevin J. Nowka
  • Patent number: 6975134
    Abstract: A buffer/driver having large output devices for driving multiple loads is configured with three parallel paths. The first logic path is made of small devices and is configured to provide the logic function of the buffer/driver without the ability to drive large loads. Second and third logic paths have the logic function of the first logic path up to the last inverting stage. The last inverting stage in each path is a single device for driving the logic states of the buffer output. The second and third logic paths have power-gating that allows the input to the pull-up and pull-down devices to float removing gate-leakage voltage stress. When the second and third logic paths are power-gated, the first logic path provides a keeper function to hold the logic state of the buffer output. The buffer/driver may be an inverter, non-inverter, or provide a multiple input logic function.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: December 13, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jente B. Kuang, Hung C. Ngo, Kevin J. Nowka
  • Patent number: 6940312
    Abstract: An LSDL circuit is improved by having the data input function to control the pre-charging of the dynamic node. The clock signal no longer is coupled to the P channel FET used to pre-charge the dynamic node. Additionally an N channel FET (NFET) is added in parallel with the NFET coupled to the clock for evaluating the dynamic node. This NFET assures the dynamic node does not float when the data input is a logic one and the clock is a logic zero.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: September 6, 2005
    Assignee: International Business Machines Corporation
    Inventors: Hung C. Ngo, Jente B. Kuang
  • Patent number: 6872991
    Abstract: Circuits within a logic domain use partitioned power supply buses. Selected of the power supply buses are coupled to the power supply voltage potentials with electronic switches with gradated conductivity and leakage current. When the circuits are actively switching during a logic operation, the power supply voltage potentials are coupled to the buses with maximum conductivity. At predetermined times later, selected of the electronic switches are switched OFF to reduce leakage current. Lower conductivity and thus lower leakage switches remain ON to ensure corresponding logic states are maintained during a controlled low leakage time period. Various logic configurations are used to switch OFF high leakage devices.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: March 29, 2005
    Assignee: International Business Machines Corporation
    Inventors: Hung C. Ngo, Jente B. Kuang, Kevin J. Nowka
  • Patent number: 6177708
    Abstract: A self-aligned SOI FET device with an “L” shaped gate structure allows an integral diode junction to be formed between the source and the body of the device. Two devices with this gate geometry can be advantageously placed side-by-side in a single rx opening that could accommodate but a single device with a “T” shaped gate structure. The devices in accordance with the teachings of this invention can be easily formed using standard prior art SOI processing steps. An aspect of this invention includes the use of these novel SOI devices with their body and source connected together in circuit applications, such as memory cell sense amplifiers, where high speed operation commends the use of SOI technology, but physical space considerations have limited their application.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: January 23, 2001
    Assignee: International Business Machines Corporation
    Inventors: Jente B. Kuang, John P. Pennings, George E. Smith, III, Michael H. Wood