Patents by Inventor Jeong Soo Byun

Jeong Soo Byun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200287056
    Abstract: A method for fabricating a nonvolatile charge trap memory device is described. The method includes subjecting a substrate to a first oxidation process to form a tunnel oxide layer overlying a polysilicon channel, and forming over the tunnel oxide layer a multi-layer charge storing layer comprising an oxygen-rich, first layer comprising a nitride, and an oxygen-lean, second layer comprising a nitride on the first layer. The substrate is then subjected to a second oxidation process to consume a portion of the second layer and form a high-temperature-oxide (HTO) layer overlying the multi-layer charge storing layer. The stoichiometric composition of the first layer results in it being substantially trap free, and the stoichiometric composition of the second layer results in it being trap dense. The second oxidation process can comprise a plasma oxidation process or a radical oxidation process using In-Situ Steam Generation.
    Type: Application
    Filed: March 16, 2020
    Publication date: September 10, 2020
    Inventors: Krishnaswamy Ramkumar, Sagy Levy, Jeong Soo Byun
  • Publication number: 20200161478
    Abstract: A method for fabricating a nonvolatile charge trap memory device is described. The method includes subjecting a substrate to a first oxidation process to form a tunnel oxide layer overlying a polysilicon channel, and forming over the tunnel oxide layer a multi-layer charge storing layer comprising an oxygen-rich, first layer comprising a nitride, and an oxygen-lean, second layer comprising a nitride on the first layer. The substrate is then subjected to a second oxidation process to consume a portion of the second layer and form a high-temperature-oxide (HTO) layer overlying the multi-layer charge storing layer. The stoichiometric composition of the first layer results in it being substantially trap free, and the stoichiometric composition of the second layer results in it being trap dense. The second oxidation process can comprise a plasma oxidation process or a radical oxidation process using In-Situ Steam Generation.
    Type: Application
    Filed: May 24, 2019
    Publication date: May 21, 2020
    Inventors: Krishnaswarmy Ramkumar, Sagy Charel Levy, Jeong Soo Byun
  • Publication number: 20200161324
    Abstract: A memory transistor includes a gate electrode and a blocking structure disposed beneath the gate electrode, where the blocking structure is formed by plasma oxidation. The memory transistor includes a multi-layer charge storage layer disposed beneath the blocking structure, wherein the multi-layer charge storage layer includes a trap dense charge storage layer over a substantially trap free charge storage layer, where a thickness of the trap dense charge storage layer is reduced by the plasma oxidation. The memory transistor further includes a tunneling layer disposed beneath the multi-layer charge storage layer and a channel region disposed beneath the tunneling layer, where the channel region is positioned laterally between a source region and a drain region.
    Type: Application
    Filed: June 7, 2019
    Publication date: May 21, 2020
    Inventors: Jeong Soo Byun, Krishnaswamy Ramkumar
  • Patent number: 10593812
    Abstract: A method for fabricating a nonvolatile charge trap memory device is described. The method includes subjecting a substrate to a first oxidation process to form a tunnel oxide layer overlying a polysilicon channel, and forming over the tunnel oxide layer a multi-layer charge storing layer comprising an oxygen-rich, first layer comprising a nitride, and an oxygen-lean, second layer comprising a nitride on the first layer. The substrate is then subjected to a second oxidation process to consume a portion of the second layer and form a high-temperature-oxide (HTO) layer overlying the multi-layer charge storing layer. The stoichiometric composition of the first layer results in it being substantially trap free, and the stoichiometric composition of the second layer results in it being trap dense. The second oxidation process can comprise a plasma oxidation process or a radical oxidation process using In-Situ Steam Generation.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: March 17, 2020
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Krishnaswamy Ramkumar, Sagy Charel Levy, Jeong Soo Byun
  • Patent number: 10319733
    Abstract: A memory transistor includes a gate electrode and a blocking structure disposed beneath the gate electrode, where the blocking structure is formed by plasma oxidation. The memory transistor includes a multi-layer charge storage layer disposed beneath the blocking structure, wherein the multi-layer charge storage layer includes a trap dense charge storage layer over a substantially trap free charge storage layer, where a thickness of the trap dense charge storage layer is reduced by the plasma oxidation. The memory transistor further includes a tunneling layer disposed beneath the multi-layer charge storage layer and a channel region disposed beneath the tunneling layer, where the channel region is positioned laterally between a source region and a drain region.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: June 11, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Jeong Soo Byun, Krishnaswamy Ramkumar
  • Patent number: 10304968
    Abstract: A memory device is described. Generally, the memory device includes a tunnel oxide layer overlying a channel connecting a source and a drain of the memory device formed in a substrate, a multi-layer charge storing layer overlying the tunnel oxide layer and a high-temperature-oxide (HTO) layer overlying the multi-layer charge storing layer. The multi-layer charge storing layer includes an oxygen-rich, first layer comprising a nitride on the tunnel oxide layer in which a composition of the first layer results in it being substantially trap free, and an oxygen-lean, second layer comprising a nitride on the first layer in which a composition of the second layer results in it being trap dense. The HTO layer includes an oxidized portion of the second layer. Other embodiments are also described.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: May 28, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Sagy Charel Levy, Jeong Soo Byun
  • Patent number: 10269985
    Abstract: A memory device is described. Generally, the memory device includes a tunnel oxide layer overlying a channel connecting a source and a drain of the memory device formed in a substrate, a multi-layer charge storing layer overlying the tunnel oxide layer and a high-temperature-oxide (HTO) layer overlying the multi-layer charge storing layer. The multi-layer charge storing layer includes an oxygen-rich, first layer comprising a nitride on the tunnel oxide layer in which a composition of the first layer results in it being substantially trap free, and an oxygen-lean, second layer comprising a nitride on the first layer in which a composition of the second layer results in it being trap dense. The HTO layer includes an oxidized portion of the second layer. Other embodiments are also described.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: April 23, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Sagy Charel Levy, Jeong Soo Byun
  • Publication number: 20190088669
    Abstract: A memory transistor includes a gate electrode and a blocking structure disposed beneath the gate electrode, where the blocking structure is formed by plasma oxidation. The memory transistor includes a multi-layer charge storage layer disposed beneath the blocking structure, wherein the multi-layer charge storage layer includes a trap dense charge storage layer over a substantially trap free charge storage layer, where a thickness of the trap dense charge storage layer is reduced by the plasma oxidation. The memory transistor further includes a tunneling layer disposed beneath the multi-layer charge storage layer and a channel region disposed beneath the tunneling layer, where the channel region is positioned laterally between a source region and a drain region.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 21, 2019
    Applicant: Cypress Semiconductor Corporation
    Inventors: Jeong Soo Byun, Krishnaswamy Ramkumar
  • Publication number: 20180351004
    Abstract: A method for fabricating a nonvolatile charge trap memory device is described. The method includes subjecting a substrate to a first oxidation process to form a tunnel oxide layer overlying a polysilicon channel, and forming over the tunnel oxide layer a multi-layer charge storing layer comprising an oxygen-rich, first layer comprising a nitride, and an oxygen-lean, second layer comprising a nitride on the first layer. The substrate is then subjected to a second oxidation process to consume a portion of the second layer and form a high-temperature-oxide (HTO) layer overlying the multi-layer charge storing layer. The stoichiometric composition of the first layer results in it being substantially trap free, and the stoichiometric composition of the second layer results in it being trap dense. The second oxidation process can comprise a plasma oxidation process or a radical oxidation process using In-Situ Steam Generation.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 6, 2018
    Applicant: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Sagy Charel Levy, Jeong Soo Byun
  • Patent number: 10128258
    Abstract: A memory transistor includes a gate electrode and a blocking structure disposed beneath the gate electrode, where the blocking structure is formed by plasma oxidation. The memory transistor includes a multi-layer charge storage layer disposed beneath the blocking structure, wherein the multi-layer charge storage layer includes a trap dense charge storage layer over a substantially trap free charge storage layer, where a thickness of the trap dense charge storage layer is reduced by the plasm oxidation. The memory transistor further includes a tunneling layer disposed beneath the multi-layer charge storage layer and a channel region disposed beneath the tunneling layer, where the channel region is positioned laterally between a source region and a drain region.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: November 13, 2018
    Assignee: Cypress Semiconductor Corporation
    Inventors: Jeong Soo Byun, Krishnaswamy Ramkumar
  • Patent number: 10090416
    Abstract: A memory device is described. Generally, the memory device includes a tunnel oxide layer overlying a channel connecting a source and a drain of the memory device formed in a substrate, a multi-layer charge storing layer overlying the tunnel oxide layer and a high-temperature-oxide (HTO) layer overlying the multi-layer charge storing layer. The multi-layer charge storing layer includes an oxygen-rich, first layer comprising a nitride on the tunnel oxide layer in which a composition of the first layer results in it being substantially trap free, and an oxygen-lean, second layer comprising a nitride on the first layer in which a composition of the second layer results in it being trap dense. The HTO layer includes an oxidized portion of the second layer. Other embodiments are also described.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: October 2, 2018
    Assignee: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Sagy Charel Levy, Jeong Soo Byun
  • Publication number: 20170005108
    Abstract: A method of making and structural embodiments of a semiconductor structure are provided. The method includes forming a tunneling layer over a channel connecting a source and a drain formed in a surface of a substrate, forming a charge storage layer overlying the tunneling layer, and forming a blocking structure on the charge storage layer by plasma oxidation. A thickness of the charge storage layer is reduced through oxidation of a portion of the charge storage layer during the formation of the blocking structure. Other embodiments are also described.
    Type: Application
    Filed: September 15, 2016
    Publication date: January 5, 2017
    Inventors: Jeong Soo Byun, Krishnaswamy Ramkumar
  • Patent number: 9460974
    Abstract: A method of making a semiconductor structure is provided. The method includes forming a tunneling layer overlying a first channel connecting a source and a drain. A charge storage layer is formed overlying the tunneling layer, the charge storage layer comprises forming a substantially trap free first layer over the tunneling layer, and forming a trap dense second layer over the first layer. Finally, a blocking structure is formed on the charge storage layer by plasma oxidation. A thickness of the charge storage layer is reduced through oxidation of a portion of the charge storage layer during the formation of the blocking structure. Other embodiments are also described.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: October 4, 2016
    Assignee: Cypress Semiconductor Corporation
    Inventors: Jeong Soo Byun, Krishnaswamy Ramkumar
  • Patent number: 9406574
    Abstract: A method of making a semiconductor structure is provided. The method includes forming a tunneling layer over a channel connecting a source and a drain formed in a surface of a substrate, forming a charge storage layer overlying the tunneling layer, and forming a blocking structure on the charge storage layer by plasma oxidation. A thickness of the charge storage layer is reduced through oxidation of a portion of the charge storage layer during the formation of the blocking structure. Other embodiments are also described.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: August 2, 2016
    Assignee: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Jeong Soo Byun, Krishnaswamy Ramkumar
  • Publication number: 20150187960
    Abstract: A memory device is described. Generally, the memory device includes a tunnel oxide layer overlying a channel connecting a source and a drain of the memory device formed in a substrate, a multi-layer charge storing layer overlying the tunnel oxide layer and a high-temperature-oxide (HTO) layer overlying the multi-layer charge storing layer. The multi-layer charge storing layer includes an oxygen-rich, first layer comprising a nitride on the tunnel oxide layer in which a composition of the first layer results in it being substantially trap free, and an oxygen-lean, second layer comprising a nitride on the first layer in which a composition of the second layer results in it being trap dense. The HTO layer includes an oxidized portion of the second layer. Other embodiments are also described.
    Type: Application
    Filed: January 26, 2015
    Publication date: July 2, 2015
    Inventors: Krishnaswamy Ramkumar, Sagy Charel Levy, Jeong Soo Byun
  • Patent number: 9031685
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. In one embodiment, an apparatus comprises a vacuum chamber body having a contiguous internal volume comprised of a first deposition region spaced-apart from a second deposition region, the chamber body having a feature operable to minimize intermixing of gases between the first and the second deposition regions, a first gas port formed in the chamber body and positioned to pulse gas preferentially to the first deposition region to enable a first deposition process to be performed in the first deposition region, and a second gas port formed in the chamber body and positioned to pulse gas preferentially to the second deposition region to enable a second deposition process to be performed in the second deposition region is provided.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: May 12, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Barry L. Chin, Alfred W. Mak, Lawrence C. Lei, Ming Xi, Hua Chung, Ken Kaung Lai, Jeong Soo Byun
  • Patent number: 8822349
    Abstract: A method of making a semiconductor structure is provided. The method includes forming a dielectric layer using a high density plasma oxidation process. The dielectric layer is on a storage layer and the thickness of the storage layer is reduced during the high density plasma oxidation process.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: September 2, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventors: Jeong Soo Byun, Krishnaswamy Ramkumar
  • Publication number: 20140130739
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. In one embodiment, an apparatus comprises a vacuum chamber body having a contiguous internal volume comprised of a first deposition region spaced-apart from a second deposition region, the chamber body having a feature operable to minimize intermixing of gases between the first and the second deposition regions, a first gas port formed in the chamber body and positioned to pulse gas preferentially to the first deposition region to enable a first deposition process to be performed in the first deposition region, and a second gas port formed in the chamber body and positioned to pulse gas preferentially to the second deposition region to enable a second deposition process to be performed in the second deposition region is provided.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 15, 2014
    Inventors: Barry L. CHIN, Alfred W. MAK, Lawrence C. LEI, Ming XI, Hua CHUNG, Ken Kaung LAI, Jeong Soo BYUN
  • Patent number: 8691648
    Abstract: Non-volatile semiconductor memories and methods of fabricating the same to improve performance thereof are provided. In one embodiment, the method includes: (i) forming a gate for a non-volatile memory transistor on a surface of a substrate overlaying a channel region formed therein, the gate including a charge trapping layer; and (ii) forming a strain inducing structure over the gate of the non-volatile memory transistor to increase charge retention of the charge trapping layer. Preferably, the memory transistor is a silicon-oxide-nitride-oxide-silicon (SONOS) transistor comprising a SONOS gate stack. More preferably, the memory also includes a logic transistor on the substrate, and the step of forming a strain inducing structure comprises the step of forming the strain inducing structure over the logic transistor. Other embodiments are also disclosed.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: April 8, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Polishchuk, Sagy Levy, Krishnaswamy Ramkumar, Jeong Soo Byun
  • Patent number: 8626330
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. In one embodiment, an apparatus comprises a vacuum chamber body having a contiguous internal volume comprised of a first deposition region spaced-apart from a second deposition region, the chamber body having a feature operable to minimize intermixing of gases between the first and the second deposition regions, a first gas port formed in the chamber body and positioned to pulse gas preferentially to the first deposition region to enable a first deposition process to be performed in the first deposition region, and a second gas port formed in the chamber body and positioned to pulse gas preferentially to the second deposition region to enable a second deposition process to be performed in the second deposition region is provided.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: January 7, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Barry L. Chin, Alfred W. Mak, Lawrence Chung-Lai Lei, Ming Xi, Hua Chung, Ken Kaung Lai, Jeong Soo Byun