Patents by Inventor Jeong-Sun Moon

Jeong-Sun Moon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9640680
    Abstract: An optical device includes an optically transparent and electrically conducting conductor including graphene, a network of metal nanowires, or graphene integrated with a network of metal nanowires. The optical device includes a II VI compound semiconductor, a III V compound semiconductor, or InAsSb.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: May 2, 2017
    Assignee: HRL Laboratories, LLC
    Inventors: Kyung-Ah Son, Hasan Sharifi, Jeong-Sun Moon, Wah S. Wong, Hwa Chang Seo
  • Patent number: 9368720
    Abstract: A switch includes an input port, an output port, a phase change material coupled between the input port and the output port, a heater, and a thermal dielectric layer in between the heater and the phase change material, and in contact with the heater and the phase change material. The thermal dielectric layer provides thermal conduction between the phase change material and the heater, and the thermal dielectric layer is nonmetallic and electrically non-conductive and includes polycrystalline AlN, diamond, or SiC.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: June 14, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Jeong-Sun Moon, Hwa-Chang Seo
  • Patent number: 9362379
    Abstract: A field effect transistor includes a substrate, a first graphene (Gr) layer on the substrate, a second graphene (Gr) layer on the substrate, a fluorographene (GrF) layer on the substrate and between the first and second graphene layers, a first ohmic contact on the first graphene layer, a second ohmic contact on the second graphene layer, a gate aligned over the fluorographene layer, and a gate dielectric between the gate and the fluorographene layer and between the gate and the first and second ohmic contacts.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: June 7, 2016
    Assignee: HRL Laboratories, LLC
    Inventor: Jeong-Sun Moon
  • Patent number: 9356564
    Abstract: A broadband linear amplifier including an input, a first distributed amplifier coupled to the input and having a bias for one of Class A or Class AB operation, the first distributed amplifier including a first plurality of field effect transistors and having a first output, a second distributed amplifier coupled to the input and having a bias for Class C operation, the second distributed amplifier including a second plurality of field effect transistors and having a second output, and a summed output coupled to the first output and the second output, wherein gate widths of the first plurality of field effect transistors monotonically decrease from the input to the first output, and wherein gate widths of the second plurality of field effect transistors monotonically decrease from the input to the second output.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: May 31, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Jongchan Kang, Jeong-Sun Moon
  • Publication number: 20160013549
    Abstract: A reconfigurable electro-magnetic tile includes a laser layer including a plurality of lasers, and a pixelated surface comprising a plurality of metal patches and a plurality of switches, wherein each respective switch of the plurality of switches is in a gap between a first respective metal patch and a second respective metal patch, wherein each respective switch is optically coupled to at least one respective laser of the plurality of lasers, and wherein each switch of the plurality of switches comprises a phase change material.
    Type: Application
    Filed: February 9, 2015
    Publication date: January 14, 2016
    Applicant: HRL LABORATORIES LLC
    Inventors: James H. SCHAFFNER, Hyok J. Song, Keyvan R. Sayyah, Pamela R. Patterson, Jeong-Sun Moon, Alan E. Reamon, Keerti S. Kona, Joseph S. Colburn
  • Patent number: 9231213
    Abstract: An apparatus, system, and/or method are described to enable optically transparent reconfigurable integrated electrical components, such as antennas and RF circuits to be integrated into an optically transparent host platform, such as glass. In one embodiment, an Ag NW film may be configured as a transparent conductor for antennas and/or as interconnects for passive circuit components, such as capacitors or resistors. Ag NW may also be used as transmission lines and/or interconnect overlays for devices. A graphene film may also be configured as active channel material for making active RF devices, such as amplifiers and switches.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: January 5, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Hyok J. Song, James H. Schaffner, Jeong-Sun Moon, Kyung-Ah Son
  • Publication number: 20150214324
    Abstract: A field effect transistor includes a substrate, a first graphene (Gr) layer on the substrate, a second graphene (Gr) layer on the substrate, a fluorographene (GrF) layer on the substrate and between the first and second graphene layers, a first ohmic contact on the first graphene layer, a second ohmic contact on the second graphene layer, a gate aligned over the fluorographene layer, and a gate dielectric between the gate and the fluorographene layer and between the gate and the first and second ohmic contacts.
    Type: Application
    Filed: April 13, 2015
    Publication date: July 30, 2015
    Inventor: Jeong-Sun MOON
  • Patent number: 9064964
    Abstract: A field effect transistor includes a substrate, a first graphene (Gr) layer on the substrate, a second graphene (Gr) layer on the substrate, a fluorographene (GrF) layer on the substrate and between the first and second graphene layers, a first ohmic contact on the first graphene layer, a second ohmic contact on the second graphene layer, a gate aligned over the fluorographene layer, and a gate dielectric between the gate and the fluorographene layer and between the gate and the first and second ohmic contacts.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: June 23, 2015
    Assignee: HRL Laboratories, LLC
    Inventor: Jeong-Sun Moon
  • Publication number: 20150084002
    Abstract: An apparatus, system, and/or method are described to enable optically transparent reconfigurable integrated electrical components, such as antennas and RF circuits to be integrated into an optically transparent host platform, such as glass. In one embodiment, an Ag NW film may be configured as a transparent conductor for antennas and/or as interconnects for passive circuit components, such as capacitors or resistors. Ag NW may also be used as transmission lines and/or interconnect overlays for devices. A graphene film may also be configured as active channel material for making active RF devices, such as amplifiers and switches.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Applicant: HRL LABORATORIES LLC
    Inventors: Hyok J. SONG, James H. Schaffner, Jeong-Sun Moon, Kyung-Ah Son
  • Patent number: 8940576
    Abstract: The present invention provides practical methods for n-type doping of graphene, either during graphene synthesis or following the formation of graphene. Some variations provide a method of n-type doping of graphene, comprising introducing a phosphorus-containing dopant fluid to a surface of graphene, under effective conditions to dope the graphene with phosphorus atoms or with phosphorus-containing molecules or fragments. It has been found that substitutional doping with phosphine can effectively modulate the electrical properties of graphene, such as graphene supported on Si or SiC substrates. Graphene sheet resistances well below 200 ohm/sq, and sheet carrier concentrations above 5×1013 cm?2, have been observed experimentally for n-doped graphene produced by the disclosed methods. This invention provides n-doped graphene for various electronic-device applications.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: January 27, 2015
    Assignee: HRL Laboratories, LLC
    Inventors: Steven S. Bui, Jeong-Sun Moon
  • Patent number: 8941095
    Abstract: An apparatus, system, and/or method are described to enable optically transparent reconfigurable integrated electrical components, such as antennas and RF circuits to be integrated into an optically transparent host platform, such as glass. In one embodiment, an Ag NW film may be configured as a transparent conductor for antennas and/or as interconnects for passive circuit components, such as capacitors or resistors. Ag NW may also be used as transmission lines and/or interconnect overlays for devices. A graphene film may also be configured as active channel material for making active RF devices, such as amplifiers and switches.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: January 27, 2015
    Assignee: HRL Laboratories, LLC
    Inventors: Hyok J. Song, James H. Schaffner, Jeong-Sun Moon, Kyung-Ah Son
  • Publication number: 20140239257
    Abstract: A field effect transistor includes a substrate, a first graphene (Gr) layer on the substrate, a second graphene (Gr) layer on the substrate, a fluorographene (GrF) layer on the substrate and between the first and second graphene layers, a first ohmic contact on the first graphene layer, a second ohmic contact on the second graphene layer, a gate aligned over the fluorographene layer, and a gate dielectric between the gate and the fluorographene layer and between the gate and the first and second ohmic contacts.
    Type: Application
    Filed: January 20, 2014
    Publication date: August 28, 2014
    Inventor: Jeong-Sun MOON
  • Patent number: 8143648
    Abstract: A photodetector containing a 2DEG layer is disclosed.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: March 27, 2012
    Assignee: HRL Laboratories, LLC
    Inventor: Jeong-Sun Moon
  • Patent number: 7830695
    Abstract: A capacitive operation method for quantum computing is disclosed where providing a sequence of write pulses above a threshold voltage induces a single charge population, forming a quantum dot (Q-dot). Determining if the single charge population was induced in the Q-dot occurs by monitoring capacitance changes while the writing is performed. Q-bits (Q-dot pairs) are formed without requiring a separate transistor for each Q-dot by multiplexing the calibration. A device which is able to perform the above method is also disclosed. The device utilizes the ability of cryogenic capacitance bridge circuits to measure the capacitance change caused by the introduction of a single charge population to a Q-dot. The device also permits swapping of Q-dot and Q-bit pairs utilizing a signal multiplexed with the voltage pulses that write (e.g. change the charge population) to the Q-dots.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: November 9, 2010
    Assignee: HRL Laboratories
    Inventor: Jeong-Sun Moon
  • Patent number: 7709825
    Abstract: A voltage supply is connected to provide a variable bias voltage to a plurality of optical quantum tunneling photodetectors to thereby vary the spectral response of the photodetectors and thus detect radiation.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 4, 2010
    Assignee: HRL Laboratories, L.L.C.
    Inventor: Jeong-Sun Moon
  • Patent number: 7601981
    Abstract: A voltage supply is connected to provide a variable bias voltage to a plurality of optical quantum tunneling photodetectors to thereby vary the spectral response of the photodetectors and thus detect radiation.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: October 13, 2009
    Assignee: HRL Laboratories, LLC
    Inventor: Jeong-Sun Moon
  • Publication number: 20090224138
    Abstract: A voltage supply is connected to provide a variable bias voltage to a plurality of optical quantum tunneling photodetectors to thereby vary the spectral response of the photodetectors and thus detect radiation.
    Type: Application
    Filed: April 10, 2009
    Publication date: September 10, 2009
    Applicant: HRL LABORATORIES, LLC
    Inventor: Jeong-Sun MOON
  • Patent number: 7495592
    Abstract: A voltage comparator including a quantum tunneling coupled transistor and a method for tuning the voltage comparator. The comparator includes a quantum tunneling coupled transistor coupled to a resistor and is capable of operating above 10 Giga-samples-per-second or a clock rate of 10 GHz. The comparator has a low power consumption of about 1 mW excluding the power required for clock generation and independent from the sampling rate. The threshold or reference voltage of the comparator is controllable by adjusting the pulse height of the clock signal. The comparator has relatively low hysteresis estimated at about 1 mV.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: February 24, 2009
    Assignee: HRL Laboratories, LLC
    Inventors: Jeong-Sun Moon, Keh-Chung Wang
  • Patent number: 7403113
    Abstract: A system for detecting chemical/biological substances and a detection method. The system comprises a plurality of sensing units or nodes and a radiofrequency link. Each unit has several sensors with different sensing curves. Each sensor is able to transmit information related to the sensed substance on a specific frequency. The sensors preferably comprise AlGaN/GaN high electron mobility transistors.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: July 22, 2008
    Assignees: California Institute of Technology, HRL Laboratories, LLC., The United States of America as represented by the Secretary of the Navy
    Inventors: Jeong-Sun Moon, Nicholas Prokopuk, Kyung-Ah Son
  • Patent number: 7247893
    Abstract: A method for fabricating a non-planar heterostructure field effect transistor using group III-nitride materials with consistent repeatable results is disclosed. The method provides a substrate on which at least one layer of semiconductor material is deposited. An AlN layer is deposited on the at least one layer of semiconductor material. A portion of the AlN layer is removed using a solvent to create a non-planar region with consistent and repeatable results. The at least one layer beneath the AlN layer is insoluble in the solvent and therefore acts as an etch stop, preventing any damage to the at least one layer beneath the AlN layer. Furthermore, should the AlN layer incur any surface damage as a result of the reactive ion etching, the damage will be removed when exposed to the solvent to create the non-planar region.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: July 24, 2007
    Assignee: HRL Laboratories, LLC
    Inventors: Jeong Sun Moon, Paul Hashimoto, Wah S. Wong, David E. Grider