Patents by Inventor Jerome Eldridge

Jerome Eldridge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060003559
    Abstract: A method and device for reducing a dopant diffusion rate in a doped semiconductor region is provided. The methods and devices include selecting a plurality of dopant elements. Selection of a plurality of dopant elements includes selecting a first dopant element with a first atomic radius larger than a host matrix atomic radius and selecting a second dopant element with a second atomic radius smaller than a host matrix atomic radius. The methods and devices further include selecting amounts of each dopant element of the plurality of dopant elements wherein amounts and atomic radii of each of the plurality of dopant elements complement each other to reduce a host matrix lattice strain. The methods and devices further include introducing the plurality of dopant elements to a selected region of the host matrix and annealing the selected region of the host matrix.
    Type: Application
    Filed: August 30, 2005
    Publication date: January 5, 2006
    Inventors: Paul Farrar, Jerome Eldridge
  • Publication number: 20060003535
    Abstract: A method and device for reducing a dopant diffusion rate in a doped semiconductor region is provided. The methods and devices include selecting a plurality of dopant elements. Selection of a plurality of dopant elements includes selecting a first dopant element with a first atomic radius larger than a host matrix atomic radius and selecting a second dopant element with a second atomic radius smaller than a host matrix atomic radius. The methods and devices further include selecting amounts of each dopant element of the plurality of dopant elements wherein amounts and atomic radii of each of the plurality of dopant elements complement each other to reduce a host matrix lattice strain. The methods and devices further include introducing the plurality of dopant elements to a selected region of the host matrix and annealing the selected region of the host matrix.
    Type: Application
    Filed: August 30, 2005
    Publication date: January 5, 2006
    Inventors: Paul Farrar, Jerome Eldridge
  • Patent number: 6958287
    Abstract: A semiconductor die having multiple solder bumps, each having a diameter less than about 100 microns, and the method for making such a die are described. The solder bumps are preferably about 10 microns in diameter, and the pitch between the solder bumps is less than 100 microns, and preferably less than or equal to 10 microns. A thermal solder jet apparatus is utilized to deposit solder material to form the solder bumps. The apparatus includes a print head having a plurality of solder ejection ports. Each ejection port has an associated gas ejection conduit connected to a chamber containing one or more hydride films. The hydride film is heated to disassociate hydrogen gas. The hydrogen gas rapidly builds up in the conduit which leads to the ejection port which is loaded with a solder material and forces the ejection of the solder material from the port.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: October 25, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Paul A. Farrar, Jerome Eldridge
  • Publication number: 20050213373
    Abstract: A microelectronic device package and method for manufacture. In one embodiment, the device package can include a microelectronic substrate having first and second device features, a conductive link that includes a conductive material extending between the first and second device features, and an external cover or enclosure disposed around at least a portion of the substrate and the conductive link. The package can be filled with a liquid or a pressurized gas to transfer heat away from the conductive link. In one embodiment, the enclosure can have a composition substantially identical to the composition of the conductive links and the enclosure can be formed simultaneously with formation of the conductive link to reduce the number of process steps required to form the microelectronic device package. A sacrificial material can temporarily support the conductive link during manufacture and can subsequently be removed to suspend at least a portion of the conductive link between two points.
    Type: Application
    Filed: May 23, 2005
    Publication date: September 29, 2005
    Inventors: Jerome Eldridge, Paul Farrar
  • Publication number: 20050167723
    Abstract: The invention includes a method of forming a capacitor structure. A first electrical node is formed, and a layer of metallic aluminum is formed over the first electrical node. Subsequently, an entirety of the metallic aluminum within the layer is transformed into one or more of AlN, AlON, and AlO, with the transformed layer being a dielectric material over the first electrical node. A second electrical node is then formed over the dielectric material. The first electrical node, second electrical node and dielectric material together define at least a portion of the capacitor structure. The invention also pertains to a capacitor structure which includes a first electrical node, a second electrical node, and a dielectric material between the first and second electrical nodes. The dielectric material consists essentially of aluminum, oxygen and nitrogen.
    Type: Application
    Filed: March 28, 2005
    Publication date: August 4, 2005
    Inventors: Leonard Forbes, Kie Ahn, Jerome Eldridge
  • Publication number: 20050112871
    Abstract: Structures and methods provide multilevel wiring interconnects in an integrated circuit assembly which alleviate problems associated with integrated circuit size and performance and include methods for forming multilevel wiring interconnects in an integrated circuit assembly, e.g., forming multilayer metal lines separated by a number of air gaps above a substrate. A silicide layer is formed on the multilayer metal lines, then oxidized. An insulator is deposited to fill interstices created by air gaps between the multilayer metal lines. In one embodiment, forming multilayer metal lines includes a conductor bridge level. In one embodiment, forming a silicide layer on the multilayer metal lines includes using a pyrolysis of silane at a temperature of between 300-500 degrees Celsius. In one embodiment, a metal layer is formed on the oxided silicide layer. The metal layer includes one of Aluminum, Chromium, Titanium, Zirconium and Aluminum oxide.
    Type: Application
    Filed: November 24, 2003
    Publication date: May 26, 2005
    Inventors: Kie Ahn, Leonard Forbes, Jerome Eldridge
  • Patent number: 6878396
    Abstract: A semiconductor die having multiple solder bumps, each having a diameter less than about 100 microns, and the method for making such a die are described. The solder bumps are preferably about 10 microns in diameter, and the pitch between the solder bumps is less than 100 microns, and preferably less than or equal to 10 microns. A thermal solder jet apparatus is utilized to deposit solder material to form the solder bumps. The apparatus includes a print head having a plurality of solder ejection ports. Each ejection port has an associated gas ejection conduit connected to a chamber containing one or more hydride films. The hydride film is heated to disassociate hydrogen gas. The hydrogen gas rapidly builds up in the conduit which leads to the ejection port which is loaded with a solder material and forces the ejection of the solder material from the port.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: April 12, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Paul A. Farrar, Jerome Eldridge
  • Publication number: 20050032279
    Abstract: A typical integrated circuit includes millions of microscopic transistors, resistors, and other components interconnected to define a circuit, for example a memory circuit. Occasionally, one or more of the components are defective and fabricators selectively replace them by activating spare, or redundant, components included within the circuit. One way of activating a redundant component is to rupture an antifuse that effectively connects the redundant component into the circuit. Unfortunately, conventional antifuses have high and/or unstable electrical resistances which compromise circuit performance and discourage their use. Accordingly, the inventors devised an exemplary antifuse structure that includes three normally disconnected conductive elements and a programming mechanism for selectively moving one of the elements to electrically connect the other two.
    Type: Application
    Filed: August 31, 2004
    Publication date: February 10, 2005
    Inventors: Leonard Forbes, Jerome Eldridge
  • Publication number: 20050026349
    Abstract: Structures and methods for Flash memory with low tunnel barrier intergate insulators are provided. The non-volatile memory includes a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by a low tunnel barrier intergate insulator. The low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of PbO, Al2O3, Ta2O5, TiO2, ZrO2, and Nb2O5. The floating gate includes a polysilicon floating gate having a metal layer formed thereon in contact with the low tunnel barrier intergate insulator. And, the control gate includes a polysilicon control gate having a metal layer formed thereon in contact with the low tunnel barrier intergate insulator.
    Type: Application
    Filed: September 1, 2004
    Publication date: February 3, 2005
    Inventors: Leonard Forbes, Jerome Eldridge
  • Publication number: 20050023602
    Abstract: Structures and methods for programmable array type logic and/or memory with p-channel devices and asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include p-channel non-volatile memory which has a first source/drain region and a second source/drain region separated by a p-type channel region in an n-type substrate. A floating gate opposing the p-type channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3. The floating gate includes a polysilicon floating gate having a metal layer formed thereon in contact with the low tunnel barrier intergate insulator.
    Type: Application
    Filed: August 30, 2004
    Publication date: February 3, 2005
    Inventors: Leonard Forbes, Jerome Eldridge, Kie Ahn
  • Publication number: 20050023603
    Abstract: Structures and methods for programmable array type logic and/or memory devices with asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include non-volatile memory which has a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator formed by atomic layer deposition. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3.
    Type: Application
    Filed: August 30, 2004
    Publication date: February 3, 2005
    Inventors: Jerome Eldridge, Kie Ahn, Leonard Forbes
  • Publication number: 20050026355
    Abstract: The invention includes a method of forming a capacitor structure. A first electrical node is formed, and a layer of metallic aluminum is formed over the first electrical node. Subsequently, an entirety of the metallic aluminum within the layer is transformed into one or more of AlN, AlON, and AlO, with the transformed layer being a dielectric material over the first electrical node. A second electrical node is then formed over the dielectric material. The first electrical node, second electrical node and dielectric material together define at least a portion of the capacitor structure. The invention also pertains to a capacitor structure which includes a first electrical node, a second electrical node, and a dielectric material between the first and second electrical nodes. The dielectric material consists essentially of aluminum, oxygen and nitrogen.
    Type: Application
    Filed: August 31, 2004
    Publication date: February 3, 2005
    Inventors: Leonard Forbes, Kie Ahn, Jerome Eldridge
  • Publication number: 20050023595
    Abstract: Structures and methods for programmable array type logic and/or memory devices with asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include non-volatile memory which has a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3. The floating gate includes a polysilicon floating gate having a metal layer formed thereon in contact with the low tunnel barrier intergate insulator.
    Type: Application
    Filed: August 31, 2004
    Publication date: February 3, 2005
    Inventors: Leonard Forbes, Jerome Eldridge, Kie Ahn
  • Publication number: 20030186485
    Abstract: A semiconductor die having multiple solder bumps, each having a diameter less than about 100 microns, and the method for making such a die are described. The solder bumps are preferably about 10 microns in diameter, and the pitch between the solder bumps is less than 100 microns, and preferably less than or equal to 10 microns. A thermal solder jet apparatus is utilized to deposit solder material to form the solder bumps. The apparatus includes a print head having a plurality of solder ejection ports. Each ejection port has an associated gas ejection conduit connected to a chamber containing one or more hydride films. The hydride film is heated to disassociate hydrogen gas. The hydrogen gas rapidly builds up in the conduit which leads to the ejection port which is loaded with a solder material and forces the ejection of the solder material from the port.
    Type: Application
    Filed: March 26, 2003
    Publication date: October 2, 2003
    Inventors: Paul A. Farrar, Jerome Eldridge
  • Publication number: 20030183677
    Abstract: A semiconductor die having multiple solder bumps, each having a diameter less than about 100 microns, and the method for making such a die are described. The solder bumps are preferably about 10 microns in diameter, and the pitch between the solder bumps is less than 100 microns, and preferably less than or equal to 10 microns. A thermal solder jet apparatus is utilized to deposit solder material to form the solder bumps. The apparatus includes a print head having a plurality of solder ejection ports. Each ejection port has an associated gas ejection conduit connected to a chamber containing one or more hydride films. The hydride film is heated to disassociate hydrogen gas. The hydrogen gas rapidly builds up in the conduit which leads to the ejection port which is loaded with a solder material and forces the ejection of the solder material from the port.
    Type: Application
    Filed: March 26, 2003
    Publication date: October 2, 2003
    Inventors: Paul A. Farrar, Jerome Eldridge
  • Patent number: 6458687
    Abstract: Conductive structures and methods for preparing conductive structures are provided. Conductive structures according to the present invention can be prepared by controllably deforming and shaping a metal layer by using a hydrogen gas source and thermally treating the hydrogen gas source.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: October 1, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Jerome Eldridge
  • Publication number: 20020034581
    Abstract: A semiconductor die having multiple solder bumps, each having a diameter less than about 100 microns, and the method for making such a die are described. The solder bumps are preferably about 10 microns in diameter, and the pitch between the solder bumps is less than 100 microns, and preferably less than or equal to 10 microns. A thermal solder jet apparatus is utilized to deposit solder material to form the solder bumps. The apparatus includes a print head having a plurality of solder ejection ports. Each ejection port has an associated gas ejection conduit connected to a chamber containing one or more hydride films. The hydride film is heated to disassociate hydrogen gas. The hydrogen gas rapidly builds up in the conduit which leads to the ejection port which is loaded with a solder material and forces the ejection of the solder material from the port.
    Type: Application
    Filed: February 2, 2001
    Publication date: March 21, 2002
    Inventors: Paul A. Farrar, Jerome Eldridge
  • Patent number: 6121131
    Abstract: Conductive structures and methods for preparing conductive structures are provided. Conductive structures according to the present invention can be prepared by controllably deforming and shaping a metal layer by using a hydrogen gas source and thermally treating the hydrogen gas source.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: September 19, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Jerome Eldridge