Patents by Inventor Jhy-Jyi Sze

Jhy-Jyi Sze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8878601
    Abstract: A circuit includes a gate node, and a bias circuit coupled to the gate node. The bias circuit is configured to, in response to a change in a gate voltage on the gate node, provide a positive feedback to the gate voltage. A power circuit is coupled to the gate node, wherein the power circuit includes a power Metal-Oxide-Semiconductor (MOS) transistor. The power circuit is configured to, in response to a change in the gate voltage, provide a negative feedback to the gate voltage. An output node is coupled to the power circuit.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jhy-Jyi Sze, Biay-Cheng Hseih, Shou-Gwo Wuu
  • Publication number: 20140264503
    Abstract: An integrated circuit having an array of APS cells. Each cell in the array has at least one transistor source or drain region that is raised relative to a channel region formed in a semiconductor substrate. The raised source or drain region includes doped polysilicon deposited on the surface of the semiconductor body and a region of the bodyextending to the channel region that has been doped to an opposite doping type from that of the channel region by diffusion of dopants from the deposited polysilicon.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jhy-Jyi Sze
  • Publication number: 20140256087
    Abstract: A method includes performing a hybrid bonding to bond a first package component to a second package component, so that a bonded pair is formed. In the bonded pair, first metal pads in the first package component are bonded to second metal pads in the second package component, and a first surface dielectric layer at a surface of the first package component is bonded to a second surface dielectric layer at a surface of the second package component. After the hybrid bonding, a thermal compressive annealing is performed on the bonded pair.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Yin Liu, Xin-Hua Huang, Chih-Hui Huang, Lan-Lin Chao, Yeur-Luen Tu, Yan-Chih Lu, Jhy-Jyi Sze, Chia-Shiung Tsai
  • Publication number: 20140217263
    Abstract: Among other things, techniques and systems are provided for identifying when a pixel of an image sensor is in an idle period. A flag is utilized to differentiate when the pixel is in an idle period and when the pixel is in an integration period. When the flag indicates that the pixel is in an idle period, a blooming operation is performed on the pixel to reduce an amount of electrical charge that has accumulated at the pixel or to mitigate electrical charge from accumulating at the pixel. In this way, the blooming operation reduces a probability that the photosensitive sensor becomes saturated during an idle period of the pixel, and thus reduces the likelihood of electrical charge from a pixel that is not intended contribute to an image from spilling over and potentially contaminating a pixel that is intended to contribute to the image.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kuo-Yu Chou, Calvin Yi-Ping Chao, Jhy-Jyi Sze, Honyih Tu, Fu-Lung Hsueh
  • Publication number: 20140220746
    Abstract: A method includes growing an epitaxy semiconductor layer over a semiconductor substrate. The epitaxy semiconductor layer is of a first conductivity type. A Lateral Insulated Gate Bipolar Transistor (LIGBT) is formed at a front surface of the epitaxy semiconductor layer. After the LIGBT is formed, a backside thinning is performed to remove the semiconductor substrate. An implantation is performed from a backside of the epitaxy semiconductor layer to form a heavily doped semiconductor layer. The heavily doped semiconductor layer is of a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: April 14, 2014
    Publication date: August 7, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jhy-Jyi Sze, Biay-Cheng Hseih, Shou-Gwo Wuu
  • Patent number: 8759225
    Abstract: The present disclosure relates to a method and composition to limit crystalline defects introduced in a semiconductor device during ion implantation. A high-temperature low dosage implant is performed utilizing a tri-layer photoresist which maintains the crystalline structure of the semiconductor device while limiting defect formation within the semiconductor device. The tri-layer photoresist comprises a layer of spin-on carbon deposited onto a substrate, a layer of silicon containing hard-mask formed above the layer of spin-on carbon, and a layer of photoresist formed above the layer of silicon containing hard-mask. A pattern formed in the layer of photoresist is sequentially transferred to the silicon containing hard-mask, then to the spin-on carbon, and defines an area of the substrate to be selectively implanted with ions.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: June 24, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung Chien Wang, Yeur-Luen Tu, Cheng-Ta Wu, Jiech-Fun Lu, Chun-Wei Chang, Wang-Pen Mo, Jhy-Jyi Sze, Chia-Shiung Tsai
  • Patent number: 8735937
    Abstract: A device includes a dielectric layer, and a heavily doped semiconductor layer over the dielectric layer. The heavily doped semiconductor layer is of a first conductivity type. A semiconductor region is over the heavily doped semiconductor layer, wherein the semiconductor region is of a second conductivity type opposite the first conductivity type. A Lateral Insulated Gate Bipolar Transistor (LIGBT) is disposed at a surface of the semiconductor region.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jhy-Jyi Sze, Biay-Cheng Hseih, Shou-Gwo Wuu
  • Publication number: 20140061738
    Abstract: The present disclosure relates to a method and composition to limit crystalline defects introduced in a semiconductor device during ion implantation. A high-temperature low dosage implant is performed utilizing a tri-layer photoresist which maintains the crystalline structure of the semiconductor device while limiting defect formation within the semiconductor device. The tri-layer photoresist comprises a layer of spin-on carbon deposited onto a substrate, a layer of silicon containing hard-mask formed above the layer of spin-on carbon, and a layer of photoresist formed above the layer of silicon containing hard-mask. A pattern formed in the layer of photoresist is sequentially transferred to the silicon containing hard-mask, then to the spin-on carbon, and defines an area of the substrate to be selectively implanted with ions.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung Chien Wang, Yeur-Luen Tu, Cheng-Ta Wu, Jiech-Fun Lu, Chun-Wei Chang, Wang-Pen Mo, Jhy-Jyi Sze, Chia-Shiung Tsai
  • Publication number: 20130320397
    Abstract: A device includes a dielectric layer, and a heavily doped semiconductor layer over the dielectric layer. The heavily doped semiconductor layer is of a first conductivity type. A semiconductor region is over the heavily doped semiconductor layer, wherein the semiconductor region is of a second conductivity type opposite the first conductivity type. A Lateral Insulated Gate Bipolar Transistor (LIGBT) is disposed at a surface of the semiconductor region.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jhy-Jyi Sze, Biay-Cheng Hseih, Shou-Gwo Wuu
  • Publication number: 20130321073
    Abstract: A circuit includes a gate node, and a bias circuit coupled to the gate node. The bias circuit is configured to, in response to a change in a gate voltage on the gate node, provide a positive feedback to the gate voltage. A power circuit is coupled to the gate node, wherein the power circuit includes a power Metal-Oxide-Semiconductor (MOS) transistor. The power circuit is configured to, in response to a change in the gate voltage, provide a negative feedback to the gate voltage. An output node is coupled to the power circuit.
    Type: Application
    Filed: September 14, 2012
    Publication date: December 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jhy-Jyi Sze, Biay-Cheng Hseih, Shou-Gwo Wuu
  • Publication number: 20130082312
    Abstract: Transistors, methods of manufacturing thereof, and image sensor circuits with reduced random telegraph signal (RTS) noise are disclosed. In one embodiment, a transistor includes a channel disposed between two isolation regions in a workpiece. The channel has edge regions proximate the isolation regions and a central region between the edge regions. The transistor includes a gate dielectric disposed over the channel, and a gate disposed over the gate dielectric. The transistor includes a voltage threshold modification feature proximate the edge regions configured to increase a voltage threshold of the transistor proximate edge regions relative to the central region of the channel.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: FENG-CHI HUNG, JHY-JYI SZE, SHOU-GWO WUU
  • Patent number: 8159557
    Abstract: A method of generating a gain of an image frame according to a look up table of gain which is set up based on luminance sensitivity of human eyes is proposed. The method includes setting a gain of an image frame to 1, scanning images of a plurality of front rows of the image frame, averaging the images of the plurality of the front rows of the image frame to generate an average value of the images of the plurality of the front rows of the image frame, finding a gain from the look up table of gain according to the average value of the images of the plurality of the front rows of the image frame, and adjusting remaining rows of the image frame according to the gain to generate images of the remaining rows of the image frame.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: April 17, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Yuan-Che Lee, Jhy-Jyi Sze, Chiao-Fu Chang, Tsung-Chien Wu
  • Patent number: 8009212
    Abstract: Circuitry for reducing fixed pattern noise in an image processing system with a 4-T (4 transistors) pixel and a method thereof is proposed. The image processing system includes two voltage sources, two current sources, a 4-T pixel, a second portion of a linearized source follower, a ping pong memory, a PGA, and auto-zero circuitry. By coupling the auto-zero circuitry to the PGA, an open loop is formed to clamp the output of an op amp of the PGA to a stable reference when resetting the PGA so as to remove DC offsets at the output terminal of the op amp.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: August 30, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Yuan-Che Lee, Jhy-Jyi Sze, Chiao-Fu Chang
  • Patent number: 7863082
    Abstract: A method for fabricating a photo diode first involves providing a substrate. A doping area is then formed on the substrate. Afterwards, a dielectric layer, and a first poly-silicon layer are formed on the substrate. An opening is then formed to expose a surface of the doping area. A second poly-silicon layer is formed on the first poly-silicon layer and within the opening. The second poly-silicon layer is patterned to form a wire, while the first poly-silicon layer is patterned to form a gate. Finally, a source/drain is formed.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: January 4, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Jhy-Jyi Sze, Ming-Yi Wang, Junbo Chen
  • Patent number: 7776676
    Abstract: A method of fabricating a complementary metal-oxide-semiconductor image sensor is provided. First, a substrate having a photo sensitive region and a transistor device region is provided. A p type well in the substrate of the transistor device region is formed. A dielectric layer and an un-doped polysilicon layer on the substrate are sequentially formed. A n type polysilicon layer on a first portion of the transistor device region and a p type polysilicon layer on the photo sensitive region and on a second portion of the transistor device region are formed. The dielectric layer, the n type polysilicon layer and the p type polysilicon layer are patterned to form a plurality of n type gate structures and a p type gate structure on the p type well of the transistor device region. A photo sensitive diode is formed in the substrate of the photo sensitive region.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: August 17, 2010
    Assignee: United Microelectronics Corp.
    Inventor: Jhy-Jyi Sze
  • Patent number: 7737479
    Abstract: An image sensor, in which, a planarized layer is formed on a semiconductor substrate including a pixel array region, an optical black region, and a logic region to cover a photo sensing unit array in the pixel array region, a patterned metal layer is formed on the planarized layer corresponding to the pixel array region and the logic region, but not the optical black region. An optical black layer is formed in the optical black region after a passivation layer is formed and before a color filter array is formed at a temperature less than about 400° C., and preferably contains metal material.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 15, 2010
    Assignees: United Microelectronics Corp., AltaSens Inc.
    Inventors: Tzeng-Fei Wen, Giuseppe Rossi, Ju-Hsin Yen, Chia-Huei Lin, Jhy-Jyi Sze, Chien-Yao Huang, Teng-Yuan Ko, Nien-Tsu Peng
  • Publication number: 20100073525
    Abstract: Circuitry for reducing fixed pattern noise in an image processing system with a 4-T (4 transistors) pixel and a method thereof is proposed. The image processing system includes two voltage sources, two current sources, a 4-T pixel, a second portion of a linearized source follower, a ping pong memory, a PGA, and auto-zero circuitry. By coupling the auto-zero circuitry to the PGA, an open loop is formed to clamp the output of an op amp of the PGA to a stable reference when resetting the PGA so as to remove DC offsets at the output terminal of the op amp.
    Type: Application
    Filed: September 25, 2008
    Publication date: March 25, 2010
    Inventors: Yuan-Che Lee, Jhy-Jyi Sze, Chiao-Fu Chang
  • Publication number: 20100073528
    Abstract: A method of generating a gain of an image frame according to a look up table of gain which is set up based on luminance sensitivity of human eyes is proposed. The method includes setting a gain of an image frame to 1, scanning images of a plurality of front rows of the image frame, averaging the images of the plurality of the front rows of the image frame to generate an average value of the images of the plurality of the front rows of the image frame, finding a gain from the look up table of gain according to the average value of the images of the plurality of the front rows of the image frame, and adjusting remaining rows of the image frame according to the gain to generate images of the remaining rows of the image frame.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 25, 2010
    Inventors: Yuan-Che Lee, Jhy-Jyi Sze, Chiao-Fu Chang, Tsung-Chien Wu
  • Publication number: 20090261393
    Abstract: A composite transfer gate is described, which is disposed over a semiconductor substrate between an electron reservoir and a floating node in the semiconductor substrate. The composite transfer gate includes at least one N-type portion and a P-type portion that are arranged laterally.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 22, 2009
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Jhy-Jyi Sze
  • Patent number: 7586138
    Abstract: An image sensor includes a semiconductor substrate, a photo receiving area in the semiconductor substrate, a gate electrode installed in a lateral side of the photo receiving area on the semiconductor substrate, and a patterned dielectric layer covering the gate electrode, the photo receiving area, and exposing a partial gate electrode. A spacer surrounds the gate electrode on the dielectric layer.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: September 8, 2009
    Assignee: United Microelectronics Corp.
    Inventor: Jhy-Jyi Sze