Patents by Inventor Ji-hyoung Yoo

Ji-hyoung Yoo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9219146
    Abstract: A high voltage PMOS replacing the lightly doped region of the drain region with a low voltage P-well adopted in the low voltage devices, so as to save a mask. In order to achieve the high breakdown voltage and the low on resistance, a thick gate oxide applied in the DMOS is inserted. The N-type well region surrounding the source region may be replaced by a low voltage N-well adopted in the low voltage device to further save a mask.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: December 22, 2015
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Ji-Hyoung Yoo, Yanjie Lian
  • Patent number: 9159795
    Abstract: A high side DMOS provides high breakdown voltage with small termination area. The high side DMOS has three parts which may comprise a stair-field plate in the termination part of the poly gate.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: October 13, 2015
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Ji-Hyoung Yoo, Lei Zhang, Daping Fu, Yanjie Lian
  • Patent number: 9087774
    Abstract: A method of fabricating an LDMOS device includes: forming a gate of the LDMOS device on a semiconductor substrate; performing tilt body implantation by implanting dopants of a first conductivity type in the semiconductor substrate using a mask, wherein the tilt body implantation is implanted at an angle from a vertical direction; performing zero tilt body implantation by implanting dopants of the first conductivity type using the same mask, wherein the zero tilt body implantation is implanted with zero tilt from the vertical direction, and wherein the tilt body implantation and the zero tilt body implantation are configured to form a body region of the LDMOS device; and forming a source region and a drain contact region of the LDMOS device, wherein the source region and the drain contact region are of a second conductivity type.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: July 21, 2015
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Jeesung Jung, Joel M. McGregor, Ji-Hyoung Yoo
  • Publication number: 20150187931
    Abstract: A high voltage PMOS replacing the lightly doped region of the drain region with a low voltage P-well adopted in the low voltage devices, so as to save a mask. In order to achieve the high breakdown voltage and the low on resistance, a thick gate oxide applied in the DMOS is inserted. The N-type well region surrounding the source region may be replaced by a low voltage N-well adopted in the low voltage device to further save a mask.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 2, 2015
    Applicant: Monolithic Power Systems, Inc.
    Inventors: Ji-Hyoung Yoo, Yanjie Lian
  • Publication number: 20150162441
    Abstract: A semiconductor device has: a gate region having a dielectric layer and a conducting layer; an N-type drain region having a lightly doped drift region and a highly doped drain contact region formed in the drift region, wherein the drain region is at a first side of the gate region; a P-type body region adjacent to the drain region, the body region having a lightly doped first portion body region, a second portion body region, and a highly doped body contact region; and an N-type highly doped source region in the body region, wherein the source region is at a second side of the gate region; wherein the first portion body region is doped with boron, the second portion body region is doped with boron and indium in the first portion body region, and the second portion body region is located adjacent to and beneath the source region.
    Type: Application
    Filed: February 13, 2015
    Publication date: June 11, 2015
    Inventors: Joel M. McGregor, Jeesung Jung, Eric K. Braun, Ji-Hyoung Yoo
  • Publication number: 20150084126
    Abstract: A method of fabricating an LDMOS device includes: forming a gate of the LDMOS device on a semiconductor substrate; performing tilt body implantation by implanting dopants of a first conductivity type in the semiconductor substrate using a mask, wherein the tilt body implantation is implanted at an angle from a vertical direction; performing zero tilt body implantation by implanting dopants of the first conductivity type using the same mask, wherein the zero tilt body implantation is implanted with zero tilt from the vertical direction, and wherein the tilt body implantation and the zero tilt body implantation are configured to form a body region of the LDMOS device; and forming a source region and a drain contact region of the LDMOS device, wherein the source region and the drain contact region are of a second conductivity type.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: Monolithic Power Systems, Inc.
    Inventors: Jeesung Jung, Joel M. McGregor, Ji-Hyoung Yoo
  • Publication number: 20150001619
    Abstract: A high side DMOS provides high breakdown voltage with small termination area. The high side DMOS has three parts which may comprise a stair-field plate in the termination part of the poly gate.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Ji-Hyoung Yoo, Lei Zhang, Daping Fu, Yanjie Lian
  • Publication number: 20150001620
    Abstract: A semiconductor device has: a gate region having a dielectric layer and a conducting layer; an N-type drain region having a lightly doped drift region and a highly doped drain contact region formed in the drift region, wherein the drain region is at a first side of the gate region; a P-type body region adjacent to the drain region, the body region having a lightly doped first portion body region, a second portion body region, and a highly doped body contact region; and an N-type highly doped source region in the body region, wherein the source region is at a second side of the gate region; wherein the first portion body region is doped with boron, the second portion body region is doped with boron and indium in the first portion body region, and the second portion body region is located adjacent to and beneath the source region.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Joel M. McGregor, Jeesung Jung, Eric K. Braun, Ji-Hyoung Yoo
  • Patent number: 8916913
    Abstract: The present disclosure discloses a high voltage semiconductor device and the associated methods of manufacturing. In one embodiment, the high voltage semiconductor device comprises: an epitaxial layer, a first low voltage well formed in the epitaxial layer; a second low voltage well formed in the epitaxial layer; a high voltage well formed in the epitaxial layer, wherein the second low voltage well is surrounded by the high voltage well; a first highly doping region formed in the first low voltage well; a second highly doping region and a third highly doping region formed in the second low voltage well, wherein the third highly doping region is adjacent to the second highly doping region; a field oxide formed in the epitaxial layer as a shallow-trench isolation structure; and a gate region formed on the epitaxial layer.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: December 23, 2014
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Ji-Hyoung Yoo, Lei Zhang
  • Patent number: 8916439
    Abstract: Method of forming dual gate insulation layers and semiconductor device having dual gate insulation layers is disclosed. The method of forming dual gate insulation layers comprises forming a first thin layer of a thick gate insulation layer on a semiconductor substrate by oxidizing the semiconductor substrate, depositing a second thicker layer of the thick gate insulation layer on the first thin layer, removing a portion of the thick gate insulation layer to expose a surface area of the semiconductor substrate and forming a thin gate insulation layer on the exposed surface area of the semiconductor substrate. The method of forming dual gate insulation layers, when applied in fabricating semiconductor devices having dual gate insulation layers and trench isolation structures, may help to reduce a silicon stress near edges of the trench isolation structures and reduce/alleviate/prevent the formation of a leaky junction around the edges of the trench isolation structures.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: December 23, 2014
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Ji-Hyoung Yoo, Ze-Qiang Yao, Jeesung Jung, Haifeng Yang
  • Patent number: 8809988
    Abstract: A Schottky diode and a method of manufacturing the Schottky diode are disclosed. The Schottky diode has an N-well or N-epitaxial layer with a first region, a second region substantially adjacent to an electron doped buried layer that has a donor electron concentration greater than that of the first region, and a third region substantially adjacent to the anode that has a donor electron concentration that is less than that of the first region. The second region may be doped with implanted phosphorus and the third region may be doped with implanted boron.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: August 19, 2014
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Ji-Hyoung Yoo, Martin E. Garnett
  • Patent number: 8772867
    Abstract: A high voltage high side DMOS removing the N-buried layer from the DMOS bottom provides lower Ron*A at given breakdown voltage. The high voltage high side DMOS has a P-type substrate, an epitaxial layer, a field oxide, an N-type well region a gate oxide, a gate poly, a P-type base region, a deep P-type region, an N-type lightly doped well region, a first N-type highly doped region, a second N-type highly doped region and a P-type highly doped region.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: July 8, 2014
    Inventors: Ji-Hyoung Yoo, Martin E. Garnett
  • Patent number: 8749014
    Abstract: The present invention discloses a Schottky diode. The Schottky diode comprises a cathode region, an anode region and a guard ring region. The anode region may comprise a metal Schottky contact. The guard ring region may comprise an outer guard ring and a plurality of inner guard stripes inside the outer guard ring. And wherein the inner guard stripe has a shallower junction depth than the outer guard ring.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: June 10, 2014
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Ji-Hyoung Yoo
  • Publication number: 20140024186
    Abstract: Method of forming dual gate insulation layers and semiconductor device having dual gate insulation layers is disclosed. The method of forming dual gate insulation layers comprises forming a first thin layer of a thick gate insulation layer on a semiconductor substrate by oxidizing the semiconductor substrate, depositing a second thicker layer of the thick gate insulation layer on the first thin layer, removing a portion of the thick gate insulation layer to expose a surface area of the semiconductor substrate and forming a thin gate insulation layer on the exposed surface area of the semiconductor substrate. The method of forming dual gate insulation layers, when applied in fabricating semiconductor devices having dual gate insulation layers and trench isolation structures, may help to reduce a silicon stress near edges of the trench isolation structures and reduce/alleviate/prevent the formation of a leaky junction around the edges of the trench isolation structures.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: Monolithic Power Systems, Inc.
    Inventors: Ji-Hyoung Yoo, Ze-Qiang Yao, Jeesung Jung, Haifeng Yang
  • Publication number: 20140015017
    Abstract: The present disclosure discloses a high voltage semiconductor device and the associated methods of manufacturing. In one embodiment, the high voltage semiconductor device comprises: an epitaxial layer, a first low voltage well formed in the epitaxial layer; a second low voltage well formed in the epitaxial layer; a high voltage well formed in the epitaxial layer, wherein the second low voltage well is surrounded by the high voltage well; a first highly doping region formed in the first low voltage well; a second highly doping region and a third highly doping region formed in the second low voltage well, wherein the third highly doping region is adjacent to the second highly doping region; a field oxide formed in the epitaxial layer as a shallow-trench isolation structure; and a gate region formed on the epitaxial layer.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Applicant: Monolithic Power Systems, Inc.
    Inventors: Ji-Hyoung Yoo, Lei Zhang
  • Patent number: 8198679
    Abstract: High voltage NMOS devices with low on resistance and associated methods of making are disclosed herein. In one embodiment, a method for making N typed MOSFET devices includes forming an N-well and a P-well with twin well process, forming field oxide, forming gate comprising an oxide layer and a conducting layer, forming a P-base in the P-well, the P-base being self-aligned to the gate, side diffusing the P-base to contact the N-well, and forming N+ source pickup region and N+ drain pickup region.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: June 12, 2012
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Ji-Hyoung Yoo
  • Publication number: 20120056294
    Abstract: The present invention discloses a Schottky diode. The Schottky diode comprises a cathode region, an anode region and a guard ring region. The anode region may comprise a metal Schottky contact. The guard ring region may comprise an outer guard ring and a plurality of inner guard stripes inside the outer guard ring. And wherein the inner guard stripe has a shallower junction depth than the outer guard ring.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 8, 2012
    Inventor: Ji-Hyoung Yoo
  • Publication number: 20110156199
    Abstract: A Schottky diode and a method of manufacturing the Schottky diode are disclosed. The Schottky diode has an N-well or N-epitaxial layer with a first region, a second region substantially adjacent to an electron doped buried layer that has a donor electron concentration greater than that of the first region, and a third region substantially adjacent to the anode that has a donor electron concentration that is less than that of the first region. The second region may be doped with implanted phosphorus and the third region may be doped with implanted boron.
    Type: Application
    Filed: September 3, 2009
    Publication date: June 30, 2011
    Applicant: Monolithic Power Systems, Incc
    Inventors: Ji-Hyoung Yoo, Martin E. Garnett
  • Publication number: 20100301414
    Abstract: High voltage NMOS devices with low on resistance and associated methods of making are disclosed herein. In one embodiment, a method for making N typed MOSFET devices includes forming an N-well and a P-well with twin well process, forming field oxide, forming gate comprising an oxide layer and a conducting layer, forming a P-base in the P-well, the P-base being self-aligned to the gate, side diffusing the P-base to contact the N-well, and forming N+ source pickup region and N+ drain pickup region.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 2, 2010
    Inventor: Ji-Hyoung Yoo
  • Patent number: 7635621
    Abstract: A lateral double-diffused metal oxide semiconductor (LDMOS) device is disclosed. The LDMOS device comprises a gate region and a body region under the gate region. The LDMOS device includes an enhanced drift region under the gate region. The enhanced drift region touches the body region. By designing the device such that the enhanced drift region overlaps and compensates the lateral tail of the body region of the LDMOS transistor, the Ron*area product is reduced. Accordingly, the on-resistance is significantly reduced while minimally affecting the breakdown voltage of the device.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: December 22, 2009
    Assignee: Micrel, Inc.
    Inventors: Steve McCormack, Ji-hyoung Yoo