Patents by Inventor Jian-Ping Wang

Jian-Ping Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8604572
    Abstract: A magnetic tunnel junction device comprises a fixed magnetic layer having a first side and a second side, the fixed magnetic layer having a magnetic anisotropy that is out of the film plane of the fixed magnetic layer; a stack of a plurality of bilayers adjacent to the first side of the fixed magnetic layer, each bilayer comprising a first layer comprising at least one of cobalt, iron, a CoFeB alloy, or a CoB alloy and a second layer in contact with the first layer, the second layer comprising palladium or platinum, wherein the plurality of bilayers has a magnetic anisotropy that is out of the film plane of each of the bilayers, wherein the fixed magnetic layer is exchange coupled to the stack of the plurality of bilayers, and a tunnel barrier layer in contact with the second side of the fixed magnetic layer.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: December 10, 2013
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Md. Tofizur Rahman
  • Publication number: 20130243699
    Abstract: The design of biodegradable magnetic nanoparticles for use in in-vivo biomedical applications. The particles can include Fe in combination with one or more of Mg, Zn, Si, C, N, and P atoms or other particles. The nanoparticles can be degraded in-vivo after usage. The nanoparticles can cease heating upon reaching a predetermined temperature or other value.
    Type: Application
    Filed: December 7, 2012
    Publication date: September 19, 2013
    Applicant: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Jian-Ping Wang, Ying Jing, Shihai He
  • Publication number: 20120314489
    Abstract: Systems and methods that enable direct communications between magnetic tunnel junctions are provided. In one embodiment, a device includes multiple input magnetic tunnel junctions and an output magnetic tunnel junction. The multiple input magnetic tunnel junctions are connected in parallel, and the output magnetic tunnel junction is connected in series to the input magnetic tunnel junctions. In another embodiment, a device includes a first magnetic tunnel junction, a second magnetic tunnel junction, and a nano-magnetic channel. Each of the first and the second magnetic tunnel junctions has a free layer, a nonmagnetic layer, and a fixed layer. The nano-magnetic channel connects the free layer of the first magnetic tunnel junction to the free layer of the second magnetic tunnel junction.
    Type: Application
    Filed: May 18, 2012
    Publication date: December 13, 2012
    Applicant: Regents of the University of Minnesota
    Inventors: David J. Lilja, Jian-Ping Wang, Andrew P. Lyle, Shruti R. Patil, Jonathan D. Harms, Xiaofeng Yao
  • Publication number: 20120181171
    Abstract: Nanoparticle deposition systems including one or more of: a hollow target of a material; at least one rotating magnet providing a magnetic field that controls movement of ions and crystallization of nanoparticles from released atoms; a nanoparticle collection device that collects crystallized nanoparticles on a substrate, wherein relative motion between the substrate and at least a target continuously expose new surface areas of the substrate to the crystallized nanoparticles; a hollow anode with a target at least partially inside the hollow anode; or a first nanoparticle source providing first nanoparticles of a first material and a second nanoparticle source providing second nanoparticles of a second material.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 19, 2012
    Applicant: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Shihai He
  • Publication number: 20110303997
    Abstract: A magnetic tunnel junction device comprises a fixed magnetic layer having a first side and a second side, the fixed magnetic layer having a magnetic anisotropy that is out of the film plane of the fixed magnetic layer; a stack of a plurality of bilayers adjacent to the first side of the fixed magnetic layer, each bilayer comprising a first layer comprising at least one of cobalt, iron, a CoFeB alloy, or a CoB alloy and a second layer in contact with the first layer, the second layer comprising palladium or platinum, wherein the plurality of bilayers has a magnetic anisotropy that is out of the film plane of each of the bilayers, wherein the fixed magnetic layer is exchange coupled to the stack of the plurality of bilayers, and a tunnel barrier layer in contact with the second side of the fixed magnetic layer.
    Type: Application
    Filed: June 14, 2011
    Publication date: December 15, 2011
    Applicant: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Md. Tofizur Rahman
  • Publication number: 20100213934
    Abstract: A device includes a sensor surface and a pair of electrodes. The sensor surface includes a first conductive layer separated from a second conductive layer by an intermediary layer, a magnetization direction of the first conductive layer and a magnetization direction of the second conductive layer having a ground state orientation of approximately 0 degrees. An electrical resistance between the pair of electrodes is determined by a magnetic field proximate the sensor surface.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 26, 2010
    Applicant: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Chengguo Xing, Yuanpeng Li, Balasubramanian Srinivasan
  • Publication number: 20080020241
    Abstract: A method and apparatus for forming a thin film magnetic recording media, the method comprises generating magnetic nanoclusters from a target of magnetic material, crystallizing the magnetic nanoclusters, and depositing the magnetic nanoclusters onto a substrate to form a thin film of magnetic particles thereon. The magnetic nanoclusters are deposited onto the substrate after crystallized and therefore after the deposition. The apparatus comprises a first chamber, a second chamber connected to the first chamber, and a third chamber connected to the second chamber. The first chamber has a source for generating magnetic nanoclusters. The second chamber is to receive the magnetic nanoclusters and crystallize the magnetic nanoclusters. The third chamber is to receive the crystallized magnetic nanoclusters from the second chamber and deposit the crystallized magnetic nanoclusters onto the substrate positioned therein.
    Type: Application
    Filed: April 24, 2007
    Publication date: January 24, 2008
    Inventors: Jingsheng Chen, Jian-Ping Wang
  • Patent number: 7208204
    Abstract: A method and apparatus for forming a thin film magnetic recording media, the method comprises generating magnetic nanoclusters from a target of magnetic material, crystallizing the magnetic nanoclusters, and depositing the magnetic nanoclusters onto a substrate to form a thin film of magnetic particles thereon. The magnetic nanoclusters are deposited onto the substrate after crystallized and therefore after the deposition. The apparatus comprises a first chamber, a second chamber connected to the first chamber, and a third chamber connected to the second chamber. The first chamber has a source for generating magnetic nanoclusters. The second chamber is to receive the magnetic nanoclusters and crystallize the magnetic nanocluster. The third chamber is to receive the crystallized magnetic nanoclusters from the second chamber and deposit the crystallized magnetic nanoclusters onto the substrate positioned therein.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: April 24, 2007
    Assignee: Agency for Science, Technology and Research
    Inventors: Jingsheng Chen, Jian-Ping Wang
  • Patent number: 7144640
    Abstract: A digital storage medium for use in data storage devices has two magnetic layers where the respective easy axes of the magnetic moments in the two layers are perpendicular to each other. Exchange coupling of the magnetic moments in the magnetic layers produces a resultant magnetic moment that is tilted out of the plane of the digital storage medium. The resultant magnetic moment of the medium allows the use of either a ring head, a single pole head, or a head that generates a field tilted at an angle for write operations.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: December 5, 2006
    Assignee: Agency for Science, Technology and Research
    Inventors: Ching Hian Hee, Jian Ping Wang, Haibao Zhao
  • Publication number: 20040259362
    Abstract: A method and apparatus for forming a thin film magnetic recording media, the method comprises generating magnetic nanoclusters from a target of magnetic material, crystallizing the magnetic nanoclusters, and depositing the magnetic nanoclusters onto a substrate to form a thin film of magnetic particles thereon. The magnetic nanoclusters are deposited onto the substrate after crystallized and therefore after the deposition. The apparatus comprises a first chamber, a second chamber connected to the first chamber, and a third chamber connected to the second chamber. The first chamber has a source for generating magnetic nanoclusters. The second chamber is to receive the magnetic nanoclusters and crystallize the magnetic nanocluster. The third chamber is to receive the crystallized magnetic nanoclusters from the second chamber and deposit the crystallized magnetic nanoclusters onto the substrate positioned therein.
    Type: Application
    Filed: February 11, 2004
    Publication date: December 23, 2004
    Inventors: Jingsheng Chen, Jian-Ping Wang
  • Patent number: 6821448
    Abstract: A method of producing a thin film magnetic device comprising forming a thin film of magnetic material over a surface of a substrate having a controlled surface topography, wherein the surface of the substrate is first subject to isotropic etching so as to increase the capacity of the substrate surface to induce a high orientation ratio in a thin film of magnetic material formed over the substrate surface without a reduction in the smoothness of the substrate; and a method of modifying a thin film magnetic device comprising a thin film of a magnetic material, the method comprising the step of subjecting a surface of the thin film magnetic device having a controlled surface topology to isotropic etching so as to increase the orientation ratio of the thin film magnetic device without reducing the smoothness of the surface of the thin film magnetic device.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: November 23, 2004
    Assignee: Data Storage Institute
    Inventors: Jian Ping Wang, Lei Huang, Tow Chong Chong
  • Publication number: 20040191578
    Abstract: Methods are provided for producing L10 ordered FePt or FePtX (where X=C, Cr, Zr, Cu, Ta, SiO2, MgO, Al2O3, B2O3 or B) thin film with (001) orientation for use in perpendicular magnetic recording media. The methods use strain-induced phase transformation from FCC to FCT. A chromium alloy (CrA) underlayer, where A=Ru, Mo, Mn, W, Ti, Zr or V with (002) preferred orientation is deposited first on any of a variety of disk substrates such as NiP-coated AlMg, glass, glass-ceramic, or glassy carbon. A seed layer such as Ta, NiAl, or C is preferably pre-deposited on the disk substrate. An intermediate layer is deposited on the CrA underlayer to decrease the thickness of an initial growth layer before a FePt or a FePtX film with a (001) texture is deposited on the intermediate layer. These methods produce thin films particularly suitable for recording media with ultrahigh recording densities.
    Type: Application
    Filed: March 24, 2003
    Publication date: September 30, 2004
    Inventors: Jingsheng Chen, Yingfan Xu, Jian Ping Wang
  • Patent number: 6794057
    Abstract: A configuration for laminated antiferromagnetically coupled magnetic recording layers for a magnetic recording medium is described. For this purpose, a stabilization layer (top layer) is put on top of the main magnetic recording layer (middle layer) and another stabilization layer (bottom layer) is put under the main magnetic recording layer. The top layer, middle layer and bottom layer are antiferromagnetically coupled. This configuration can double the antiferromagnetic coupling on the recording layer and thus increase the thermal stability. This configuration can also further reduce the remnant magnetization thickness product (Mr&dgr;), which is critical for low noise media. A traditional or new intermediate layer, underlayer and seedlayer can be used under magnetic layers of the present invention. Further, a tradition or new overcoat and lubricant can be used over the magnetic layers of the present invention.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: September 21, 2004
    Assignee: Data Storage Institute
    Inventors: Jian-Ping Wang, Seidikkurippu Nellainayagam Piramanayagam
  • Patent number: 6730197
    Abstract: An oblique sputtering deposition apparatus is provided for preparing a thin film. A collimator having angled passages for filtering out particles from stray directions is placed between the substrate and the incident particle flux. The angle of the passages can be adjusted from about 0 to about 90° with respect to the substrate normal according to requirements. The oblique incidence of particle flux brings forms a column structure which is also angled.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: May 4, 2004
    Assignee: Data Storage Institute
    Inventors: Jian-Ping Wang, Jianzhong Shi
  • Patent number: 6719841
    Abstract: A method of fabricating a high-density magnetic data-storage medium, the method comprising the steps of: (a) forming a plurality of nanodots of non-magnetic material in a regular array on a surface of a substrate, said array being notionally dividable into a plurality of clusters that each comprise a plurality of nanodots, wherein each nanodot of a said cluster overlaps with neighbouring nanodots of that cluster to form a well between them; (b) depositing magnetic material onto said substrate to at least partly fill the wells of each cluster; and (c) removing material to reveal a regular array of wells filled with magnetic material, each of said wells being separated from neighbouring wells by non-magnetic material.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: April 13, 2004
    Assignee: Data Storage Institute
    Inventors: Yunjie Chen, Jian-Ping Wang
  • Patent number: 6699332
    Abstract: A method of producing a magnetic recording medium comprising the steps of providing a substrate having a layer of a non-magnetic material that can be converted into a magnetic state by annealing, and then converting selected portions of the non-magnetic layer to a magnetic state by subjecting them to annealing by directing a focussed beam of radiation onto the substrate to form a patterned magnetic layer comprising an ordered array of magnetic regions separated by non-magnetic regions.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: March 2, 2004
    Assignee: Data Storage Institute
    Inventors: Seidikkurippu N. Piramanayagam, Jian Ping Wang
  • Patent number: 6641702
    Abstract: The present invention is directed to a sputtering device for depositing multi-layer films on a substrate, the sputtering device comprising at least one planar-magnetron-sputtering-cathode and at least one facing-targets-sputtering-cathode housed in a single vacuum chamber, and adapted such that each planar-magnetron-sputtering-cathode and facing-targets-sputtering-cathode can be selectively positioned for sputtering deposition onto a substrate.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: November 4, 2003
    Assignee: Data Storage Institute
    Inventors: Jian Zhong Shi, Jian Ping Wang
  • Publication number: 20030091865
    Abstract: A method of fabricating a high-density magnetic data-storage medium, the method comprising the steps of: (a) forming a plurality of nanodots of non-magnetic material in a regular array on a surface of a substrate, said array being notionally dividable into a plurality of clusters that each comprise a plurality of nanodots, wherein each nanodot of a said cluster overlaps with neighbouring nanodots of that cluster to form a well between them; (b) depositing magnetic material onto said substrate to at least partly fill the wells of each cluster; and (c) removing material to reveal a regular array of wells filled with magnetic material, each of said wells being separated from neighbouring wells by non-magnetic material.
    Type: Application
    Filed: May 9, 2002
    Publication date: May 15, 2003
    Inventors: Yunjie Chen, Jian-Ping Wang
  • Publication number: 20030091738
    Abstract: A method of forming at least one layer on a substrate surface by vacuum deposition of particles onto the substrate surface, the method comprising the step of moving at least part of the substrate at high speed during vacuum deposition in a first direction parallel to the substrate surface. The method reduces the amount of macroparticles in a layer or layers deposited on the substrate, and controls the microstructure and crystallographic structure of the deposited layer or layers. Also disclosed are devices for performing the method, and resulting products, for example a hard disk thin film media.
    Type: Application
    Filed: June 24, 2002
    Publication date: May 15, 2003
    Applicant: DATA STORAGE INSTITUTE
    Inventors: Jian-Ping Wang, Jianzhong Shi, Tow Chong Chong
  • Publication number: 20030087135
    Abstract: A configuration for laminated antiferromagnetically coupled magnetic recording layers for a magnetic recording medium is described. For this purpose, a stabilization layer (top layer) is put on top of the main magnetic recording layer (middle layer) and another stabilization layer (bottom layer) is put under the main magnetic recording layer. The top layer, middle layer and bottom layer are antiferromagnetically coupled. This configuration can double the antiferromagnetic coupling on the recording layer and thus increase the thermal stability. This configuration can also further reduce the remnant magnetization thickness product (Mr&dgr;), which is critical for low noise media. A traditional or new intermediate layer, underlayer and seedlayer can be used under magnetic layers of the present invention. Further, a tradition or new overcoat and lubricant can be used over the magnetic layers of the present invention.
    Type: Application
    Filed: June 18, 2002
    Publication date: May 8, 2003
    Inventors: Jian-Ping Wang, S. N. Piramanayagam