Patents by Inventor Jianhua Yao

Jianhua Yao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10975314
    Abstract: Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. At least a portion of the activation effluent is alkylated to enhanced yields of products that are suitable for use as a blend component of liquid transportation fuels.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: April 13, 2021
    Assignee: Phillips 66 Company
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wulfers, Bruce B. Randolph, Maziar Sardashti
  • Publication number: 20200409134
    Abstract: An apparatus, method and storage medium for controlling a pathologic microscope are provided. The method includes obtaining a pathological digital image from an incident optical path of the pathologic microscope; performing artificial intelligence (AI) analysis on the pathological digital image to generate AI analysis information; and controlling an augmented reality (AR) projection component to project the AI analysis information on a microscopic field of the pathologic microscope on an outgoing optical path.
    Type: Application
    Filed: September 10, 2020
    Publication date: December 31, 2020
    Applicant: TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED
    Inventors: Jianhua YAO, Xiao HAN, Junzhou HUANG, Wei LIU, Yen-Hsiang WANG, De CAI
  • Patent number: 10870808
    Abstract: Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. The process yields products that are suitable for use as a blend component of liquid transportation fuels.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 22, 2020
    Assignee: Phillips 66 Company
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wulfers, Bruce B. Randolph, Maziar Sardashti
  • Patent number: 10865168
    Abstract: Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to produce an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. Finally, the activation effluent is oligomerized. The process produced increased yields of products that meet specifications for a blend component of liquid transportation fuels.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 15, 2020
    Assignee: Phillips 66 Company
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wülfers, Bruce B. Randolph, Maziar Sardashti
  • Publication number: 20200339887
    Abstract: Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. At least a portion of the activation effluent is alkylated to enhanced yields of products that are suitable for use as a blend component of liquid transportation fuels.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 29, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wulfers, Bruce B. Randolph, Maziar Sardashti
  • Publication number: 20200339888
    Abstract: Systems operable to produce liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The system comprises a first separator operable to separate a hydrocarbon feed stream into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. An isomerization reactor isomerizes the second fraction to convert at least a portion of the n-pentane to isopentane. The resulting isomerization effluent is combined with the hydrocarbon feed stream, allowing the isopentane produced in the isomerization reactor to be separated into the first fraction in the first separator. An activation reactor catalytically activates the first fraction to produce an activation effluent comprising olefins and aromatics. Certain embodiments additionally comprise either an oligomerization reactor or and alkylation reactor operable to further upgrade the activation effluent, thereby enhancing yields.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 29, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wulfers, Bruce B. Randolph, Maziar Sardashti
  • Publication number: 20200339896
    Abstract: Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. The process yields products that are suitable for use as a blend component of liquid transportation fuels.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 29, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wulfers, Bruce B. Randolph, Maziar Sardashti
  • Publication number: 20200339489
    Abstract: Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to produce an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. Finally, the activation effluent is oligomerized. The process produced increased yields of products that meet specifications for a blend component of liquid transportation fuels.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 29, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wulfers, Bruce B. Randolph, Maziar Sardashti
  • Patent number: 10815438
    Abstract: The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: October 27, 2020
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Steven E. Lusk, Robert M. Walston
  • Patent number: 10792766
    Abstract: The invention relates to additive manufacturing field and laser shock peening (LSP) field, in particular to a combined apparatus for layer-by-layer interactive additive manufacturing with laser thermal/mechanical effects. In the apparatus, a LSP module and a SLM module operate in alternate so as to perform LSP for the formed part in the forming process of the formed part, and thereby a better strengthening effect of the formed part is achieved. The invention effectively overcomes the challenges of “shape control” against deformation and cracking of the formed parts incurred by internal stress and “property control” against poor fatigue property of the formed parts incurred by metallurgical defects during additive manufacturing, improves fatigue strength and mechanical properties of the faulted parts, and realizes high-efficiency and high-quality holistic processing of the formed parts.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: October 6, 2020
    Assignee: JIANGSU UNIVERSITY
    Inventors: Jinzhong Lu, Haifei Lu, Jianhua Yao, Kaiyu Luo, Fangnian Lang, Liujun Wu, Yikai Shao
  • Patent number: 10774017
    Abstract: The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction. The process provides increased yields of upgraded hydrocarbon products that possess the characteristics of a liquid transportation fuel or a blend component thereof.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: September 15, 2020
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Steven E. Lusk, Robert M. Walston, Jr.
  • Patent number: 10745328
    Abstract: The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: August 18, 2020
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Steven E. Lusk, Robert M. Walston, Jr.
  • Publication number: 20200109095
    Abstract: The present disclosure relates to processes that catalytically convert a hydrocarbon feed stream predominantly comprising both isopentane and n-pentane to yield upgraded hydrocarbon products that are suitable for use either as a blend component of liquid transportation fuels or as an intermediate in the production of other value-added chemicals. The hydrocarbon feed stream is isomerized in a first reaction zone to convert at least a portion of the n-pentane to isopentane, followed by catalytic-activation of the isomerization effluent in a second reaction zone with an activation catalyst to produce an activation effluent. The process increases the conversion of the hydrocarbon feed stream to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. Certain embodiments provide for further upgrading of at least a portion of the activation effluent by either oligomerization or alkylation.
    Type: Application
    Filed: October 4, 2019
    Publication date: April 9, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Edward C. Weintrob, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Robert M. Walston, Steven E. Lusk
  • Publication number: 20200109341
    Abstract: The present disclosure relates to systems operable to catalytically convert a hydrocarbon feed stream predominantly comprising both isopentane and n-pentane to yield upgraded hydrocarbon products that are suitable for use either as a blend component of liquid transportation fuels or as an intermediate in the production of other value-added chemicals. The hydrocarbon feed stream is isomerized in a first reaction zone to convert at least a portion of the n-pentane to isopentane, followed by catalytic-activation of the isomerization effluent in a second reaction zone with an activation catalyst to produce an activation effluent. The process increases the conversion of the hydrocarbon feed stream to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. Certain embodiments provide for further upgrading of at least a portion of the activation effluent by either oligomerization or alkylation.
    Type: Application
    Filed: October 4, 2019
    Publication date: April 9, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Edward C. Weintrob, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Robert M. Walston, Steven E. Lusk
  • Publication number: 20200086449
    Abstract: The invention discloses a processing apparatus for elliptical annular optical glass, including a processing box, wherein the processing box is provided with a processing chamber with an opening forward, a sliding block is slidably mounted in the processing chamber, and the second motor passes through the power rod The disc is driven to rotate forward, and the disc drives the scriber to rotate through the connecting block. After the scribing mechanism completes the scribing of the glass, the sliding block moves downward through the first motor, and the sliding block moves downward to remove the excess glass. No manual operation is required, and the manual operation of the broken glass is avoided. The polishing block in the polishing mechanism polishes the glass to ensure that the glass is not scratched when the glass is manually removed, and is slid when the glass is large.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 19, 2020
    Inventor: Jianhua Yao
  • Publication number: 20200088635
    Abstract: The invention discloses a crystal purity detecting apparatus, including a machine body, wherein the detecting body is provided with a detecting chamber, and a detecting device is arranged in the detecting chamber, and a symmetric power chamber is arranged in the inner wall of the left and right sides of the detecting chamber. The detecting chamber is provided with a lifting device, the power chamber is provided with a transmission device, and the power chamber is provided with a power device; the invention has the advantages of simple structure, convenient operation and convenient maintenance, and the device can perform various positions on the crystal the detection, the accuracy of the device judgment is high, and the labor intensity of the professional is lowered, so the device has high use and promotion value.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 19, 2020
    Inventor: Jianhua Yao
  • Publication number: 20200079678
    Abstract: The invention discloses a protective glass cutting machine, including a cutting body, a cutting cavity is arranged in the cutting body, a conveying device is arranged in the cutting cavity, and the conveying device comprises a vertically symmetric conveying The rotating wheel, the opposite direction of the conveying wheel can drive the glass tube to move to the left for cutting. The invention rotates along the glass tube by the heated cutting knife, and the glass tube is quickly cut, and the glass tube is cut. The left and right sides are respectively provided with an output device and a conveying device to ensure the stability of the glass tube and improve the stability of the glass tube cutting. Secondly, when the glass tube is input to the left, the cutting knife and the glass tube are not abutted by the telescopic device.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Inventor: Jianhua Yao
  • Patent number: 10550334
    Abstract: A process is disclosed for shifting the product of a hydrocracker in a hydrocarbon refinery back and forth from a more naphtha focused product slate to a more diesel focused product slate to take advantage of price and demand shifts between gasoline and diesel by using a naphtha selective catalyst and temporarily passivating the catalyst with a basic material such as ammonia in the hydrocracker. The ammonia passivates the acid catalyst sites on the catalyst and produces more total liquids and more diesel with attractive cold flow and pour point properties for a temporary period. When implemented in a temporary manner and the flow of ammonia is suspended the hydrocracker product slate returns to a more gasoline focused slate.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: February 4, 2020
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Xiaochun Xu, Jianhua Yao
  • Publication number: 20200030911
    Abstract: A flexible self-adaptive composite carbon brush-type electromagnetic composite field synchronous laser cladding device, comprising an electromagnetic field synchronous coupling module that processes a part to be processed, a mechanical arm that drives the electromagnetic field synchronous coupling module to move, and a laser that generates laser; the electromagnetic field synchronous coupling module comprises a laser head, an electric field portion and a magnetic field portion; the magnetic field portion comprises two magnetic field generating modules, and the electric field portion comprises two electric field generating modules, the magnetic field portion and the electric field portion both being fixedly erected at the periphery of the laser head by means of a supporting structure.
    Type: Application
    Filed: April 28, 2018
    Publication date: January 30, 2020
    Inventors: Jianhua YAO, Liang WANG, Qunli ZHANG, Guolong WU
  • Patent number: 10487277
    Abstract: Systems operable to produce liquid transportation fuels by converting a hydrocarbon feed stream that comprises both isopentane and n-pentane. The system separates the hydrocarbon feed stream to form a first fraction comprising isopentane and smaller hydrocarbons, and a second fraction comprising n-pentane and larger components of the hydrocarbon feeds stream. Each fraction is then catalytically-activated in a separate activation reactor containing a separate activation catalyst, where the conditions maintained in each reactor are selected to maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. Optionally, the first activation reactor is maintained at a lower temperature than the second activation reactor.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: November 26, 2019
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Steven E. Lusk, Robert M. Walston, Jr.