Patents by Inventor Jianhua Yao

Jianhua Yao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9358520
    Abstract: A method of hydrotreating liquefied biomass feedstock with diesel feedstock to produce alkanes is demonstrated that prevents damage to the reactor catalyst, reduces coke production, and converts nearly all of the polyols to alkanes. In order to mitigate the potential coking issue and to moderate the temperature of the catalyst bed while maintaining high conversion for sugar alcohol to hydrocarbon via a hydrotreating process, a diesel feedstock is fed over the reactor catalyst with multiple injections of polyol feedstock along the reactor.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: June 7, 2016
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Jianhua Yao, Edward L. Sughrue, II, Ronald E. Brown
  • Publication number: 20150376514
    Abstract: Biomass derived gas oil is blended with petroleum derived gas oil and upgrading into more salable and more valuable products by co-processing the blended material in a gas oil hydrocracking system comprising two reactors where the blended material is first hydrotreated and then hydrocracked.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 31, 2015
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Jianhua YAO, Sourabh S. PANSARE, Lianhui DING
  • Patent number: 9156755
    Abstract: The conversion of diols to mono-alcohols as fuel blendstocks. In one embodiment hydrotreating processes are described that selectively convert glycols to mono-alcohols that can be blended as biofuels. Both NiMo and CoMo catalysts are active for the reaction and reaction conditions can also impact the selectivity of mono-alcohols.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: October 13, 2015
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Jianhua Yao, Edward L Sughrue, II, TiePan Shi, Brian Dunn
  • Patent number: 9120986
    Abstract: Cellulose and hemicellulose from biomass can be broken down to C6 and C5 sugars and further converted to corresponding sugar alcohols. It is now found that a new catalyst, MoS2, is active for the hydrogenation of sugar alcohols to hydrocarbons. Combining the technologies listed above allows us to convert the cellulose/hemicellulose to liquid hydrocarbons.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: September 1, 2015
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Madhu Anand, Jianhua Yao, Edward L. Sughrue, II
  • Publication number: 20150196892
    Abstract: Systems relating to thermal activation (or cracking) of ethane to an intermediate, low purity raw ethylene stream in a first stage. The system then mixes this stream with a stream of raw biomass-derived ethanol that may contain more than four volume percent of water. The resulting mixture is reacted over a suitable catalyst at temperatures and pressures suitable to produce gasoline-range and diesel-range blend stock.
    Type: Application
    Filed: December 16, 2014
    Publication date: July 16, 2015
    Applicant: Phillips 66 Company
    Inventors: Jianhua Yao, Dhananjay Ghonasgi, Tushar Choudhary, Warren Ewert
  • Publication number: 20150175907
    Abstract: Converting ethane may include directing a gaseous stream from a gas well into a fractionator for fractionating and producing a post-fractionator ethane stream, which is directed into a thermal activation unit for heating and raising the temperature of the post-fractionator ethane stream thereby creating an activated ethane stream, which is directed into a quench tower thereby creating a quenched stream, which may be converted in a catalytic conversion unit to a mixed product stream containing hydrogen and C1-C15 hydrocarbons; directing the mixed product stream into a first separation unit forming a stream of C4+ hydrocarbon product and a stream of C1-C3 hydrocarbons; directing the stream of C1-C3 hydrocarbons into a catalytic hydrogenation reactor thereby imparting hydrogen into a post-hydrogenation reactor stream, which is directed directly into a second separation unit thereby creating a light hydrocarbons recycle stream, which may be recycled into the thermal activation unit, and a hydrogen and methane str
    Type: Application
    Filed: December 16, 2014
    Publication date: June 25, 2015
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Jianhua Yao, Dhananjay Ghonasgi, Tushar Choudhary, Warren Ewert
  • Publication number: 20150175908
    Abstract: Processes relating to thermal activation (or cracking) of ethane to an intermediate, low purity raw ethylene stream in a first stage. This stream is then mixed with a stream of biomass-derived ethanol that may contain four volume percent or more of water. The resulting mixture is reacted over a suitable catalyst at temperatures and pressures suitable to produce gasoline-range and diesel-range blend stock.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 25, 2015
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Jianhua Yao, Dhananjay Ghonasgi, Tushar Choudhary, Warren Ewert
  • Patent number: 8993818
    Abstract: Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars/sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A self-sustainable process was designed to reduce the coke by co-feeding sugars/sugar derivatives with the paraffin products from hydrogenation of sugars/sugar derivatives. Paraffins without complete conversion result in products with less aromatics and relatively low density compared with the products directly from zeolite upgrading. Thus, the process is more economically favorable.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: March 31, 2015
    Assignee: Phillips 66 Company
    Inventors: Yun Bao, Edward L. Sughrue, II, Jianhua Yao, TiePan Shi, Kristi A. Fjare, Lisa L. Myers
  • Patent number: 8961794
    Abstract: This invention relates to a process for production of transportation fuels from biomass. More particularly, this invention relates to a process for using solvent to remove metal impurities and high molecular weight components from biomass derived biocrude to prevent potential catalyst poisoning and catalyst bed plugging in biocrude-to-transportation fuel upgrading process.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: February 24, 2015
    Assignee: Phillips 66 Company
    Inventors: Kristi Fjare, Jianhua Yao, Edward L. Sughrue, Jaehoon Bae, TiePan Shi, Yun Bao, Edgar Lotero
  • Patent number: 8932453
    Abstract: This invention relates to a hydroprocessing process with improved catalyst activity when hydroprocessing petroleum based feedstock or an oxygen containing feedstock. This invention also relates to a hydrotreating process with improved hydrodesulfurization (HDS) activity of a hydrotreating catalyst such as Co/Mo by co-feeding carbon monoxide or its precursors. Such inventive process confirms that adding a small amount of CO to H2 in a hydrotreater for a few days leads to an increase in product sulfur due to the inhibition of CO on the hydrotreating catalyst such as Co/Mo. However, it has been unexpectedly found that after the CO was removed from the hydrogen stream, product sulfur levels decreased to values below they were before CO addition which means the activity of the hydrotreating catalyst increased after the CO treatment.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: January 13, 2015
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Dhananjay B. Ghonasgi, Xiaochun Xu, Larry D. Swinney
  • Publication number: 20140322087
    Abstract: A method of hydrotreating liquefied biomass feedstock with diesel feedstock to produce alkanes is demonstrated that prevents damage to the reactor catalyst, reduces coke production, and converts nearly all of the polyols to alkanes. In order to mitigate the potential coking issue and to moderate the temperature of the catalyst bed while maintaining high conversion for sugar alcohol to hydrocarbon via a hydrotreating process, a diesel feedstock is fed over the reactor catalyst with multiple injections of polyol feedstock along the reactor.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Jianhua YAO, Edward L. SUGHRUE, II, Ronald E. BROWN
  • Patent number: 8822745
    Abstract: Described is a method for converting biomass derived pyrolysis oil (bio-oil) into materials that will be more useful for transportation fuels including the following two steps: 1) solubilizing and extracting bio-oil oxygenates, and 2) zeolite catalyzed hydrogenation of the oxygenates into renewable fuel range materials.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: September 2, 2014
    Assignee: Phillips 66 Company
    Inventors: Kristi A. Fjare, Tie-Pan Shi, Edward L. Sughrue, II, Jianhua Yao
  • Patent number: 8809607
    Abstract: A process for co-production of renewable diesel fuel range hydrocarbons and gasoline fuel range hydrocarbons from biomass-derived oils and fatty materials (e.g. triglycerides, diglycerides, monoglycerides, and free fatty acids) and biomass-derived polyol (e.g. sorbitol, xylitol, trehalose, sucrose, and sugar alcohol), respectively, in a same refinery hydrotreater with or without co-feeding of diesel fuel range hydrocarbons.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: August 19, 2014
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Edward L. Sughrue, II
  • Patent number: 8809604
    Abstract: A method of hydrotreating liquefied biomass feedstock with diesel feedstock to produce alkanes is demonstrated that prevents damage to the reactor catalyst, reduces coke production, and converts nearly all of the polyols to alkanes. In order to mitigate the potential coking issue and to moderate the temperature of the catalyst bed while maintaining high conversion for sugar alcohol to hydrocarbon via a hydrotreating process, a diesel feedstock is fed over the reactor catalyst with multiple injections of polyol feedstock along the reactor.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: August 19, 2014
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Edward L. Sughrue, II, Ronald E. Brown
  • Patent number: 8809605
    Abstract: Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars/sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A process was designed to reduce the coke by co-feeding sugars/sugar derivatives with a saturated recycle stream containing hydrogenated products.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: August 19, 2014
    Assignee: Phillips 66 Company
    Inventors: Yun Bao, Edward L. Sughrue, II, Jianhua Yao, TiePan Shi, Kristi A. Fjare, Lisa L. Myers, Ronald E. Brown
  • Publication number: 20140213836
    Abstract: A heated petroleum-derived hydrocarbon is contacted with a triglyceride feed in a thermal cracking zone to decompose and remove impurities prior to hydrotreating the mixture to fuel range hydrocarbon. This process allows the use of a variety of low cost triglyceride feeds while reducing fouling of process equipment and catalyst. The process also reduces the use of chemicals required for conventional degumming of triglyceride feeds.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Jianhua YAO, Edward L. SUGHRUE, II, Dhananjay B. GHONASGI, Xiaochun XU
  • Patent number: 8766024
    Abstract: It has been discovered that the residence time of oils/fats in metal apparatus, particularly in the upstream of a hydrotreating unit, for example, a heat exchanger and/or a storage/feed tank, can impact significantly on corrosiveness of oils/fats in combination with and without conventional hydrocarbons. In addition, it is also found that the presence of hydrogen in the metal apparatus can also inhibit the corrosion rate of oils/fats.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: July 1, 2014
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Devadas Panjala, Edward L. Sughrue, II, Eric W. Vetters, Bruce Randolph
  • Publication number: 20140148627
    Abstract: Cellulose and hemicellulose from biomass can be broken down to C6 and C5 sugars and further converted to corresponding sugar alcohols. It is now found that a new catalyst, MoS2, is active for the hydrogenation of sugar alcohols to hydrocarbons. Combining the technologies listed above allows us to convert the cellulose/hemicellulose to liquid hydrocarbons.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Madhu ANAND, Jianhua YAO, Edward L. SUGHRUE, II
  • Publication number: 20140147344
    Abstract: Cellulose and hemicellulose from biomass can be broken down to C6 and C5 sugars and further converted to corresponding sugar alcohols. It is now found that a new catalyst, MoS2, is active for the hydrogenation of sugar alcohols to hydrocarbons. Combining the technologies listed above allows us to convert the cellulose/hemicellulose to liquid hydrocarbons.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Madhu ANAND, Jianhua YAO, Edward L. SUGHRUE, II
  • Patent number: 8729322
    Abstract: Conversion of renewable hydrocarbons to transportation fuels is required to reduce carbon emission, limit the use of fossil fuels, and develop renewable energy sources. Sorbitol, xylitol and trehelose are polyalcohols generated from the liquefaction of various sugars and carbohydrates in biomass from algae, corn, sugarcane, switchgrasses, and biological wastes. Mixtures of aqueous polyols and fuel feedstocks are catalyzed over metal catalysts to produce hexanes, pentanes, and lighter hydrocarbons. By managing the catalyst, reaction conditions and sulfur content, the octane value of the product fuel is dramatically increased.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: May 20, 2014
    Assignee: Phillips 66 Company
    Inventors: Edward L. Sughrue, Jianhua Yao