Patents by Inventor Jianping Zhang

Jianping Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040235969
    Abstract: A gas-agitated multiphase reactor system with multiple reaction zones comprising gas-liquid or gas-liquid-solid mixtures that can maximize the production rate while allowing better control of the temperature distribution and better control of the liquid and solid phases in the reactors.
    Type: Application
    Filed: May 10, 2004
    Publication date: November 25, 2004
    Applicant: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Jianping Zhang, Sergio R. Mohedas, James D. Ortego
  • Publication number: 20040235968
    Abstract: The present invention provides an apparatus and method for controlling the hydrodynamics within a gas agitated multiphase reactor at a given gas linear velocity. The embodiments of the present invention involve novel configurations of the multiphase reactor internal structures. In general, the configurations comprise a plurality of discrete reaction flow zones created by arranging the internal structures of a multiphase reactor.
    Type: Application
    Filed: March 24, 2004
    Publication date: November 25, 2004
    Applicant: ConocoPhillips Company
    Inventors: Yi Jiang, Jianping Zhang, Rafael L. Espinoza
  • Publication number: 20040235967
    Abstract: Methods for reducing the average molecular weight of liquid hydrocarbons in a Fischer-Tropsch reactor are disclosed. The preferred embodiments of the present invention are characterized by feeding a hydrocarbon stream, which lowers the average molecular weight of the hydrocarbon liquids inside the reactor, and more preferably by recycling a portion of low-molecular weight hydrocarbon products back into the reactor. Lowering the molecular weight of the hydrocarbon liquids inside the reactor increases the mass transfer and solubility, and diffusivity of the reactants in the hydrocarbons present in the slurry.
    Type: Application
    Filed: May 23, 2003
    Publication date: November 25, 2004
    Applicant: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Harold A. Wright, Jianping Zhang
  • Patent number: 6809122
    Abstract: The present invention relates to a method and apparatus for reducing the maximum water concentration in multi-phase reactors operating at Fischer-Tropsch conditions. In a preferred embodiment of the present invention, a method of reducing the maximum concentration of water in a multi-phase reactor containing an expanded slurry bed and a water-rich slurry region for Fisher-Tropsch synthesis includes changing the flow structure of a predetermined region in the reactor. The flow structure may be changed by introducing a mixing enhancing fluid into the predetermined region, installing baffles into the predetermined region, or by other methods known in the art. Preferably the predetermined region is located between ½ H and H and between ½ R and R, where H is the height of the expanded slurry bed and R is the radius of the reactor.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: October 26, 2004
    Assignee: ConocoPhillips Company
    Inventors: Jianping Zhang, Rafael L. Espinoza, Sergio R. Mohedas, Beatrice C. Ortego
  • Publication number: 20040204508
    Abstract: The present invention relates to a method and apparatus for reducing the maximum water concentration in multi-phase reactors operating at Fischer-Tropsch conditions. In a preferred embodiment of the present invention, a method of reducing the maximum concentration of water in a multi-phase reactor containing an expanded slurry bed and a water-rich slurry region for Fisher-Tropsch synthesis includes changing the flow structure of a predetermined region in the reactor. The flow structure may be changed by introducing a mixing enhancing fluid into the predetermined region, installing baffles into the predetermined region, or by other methods known in the art. Preferably the predetermined region is located between ½ H and H and between ½ R and R, where H is the height of the expanded slurry bed and R is the radius of the reactor.
    Type: Application
    Filed: April 28, 2004
    Publication date: October 14, 2004
    Applicant: ConocoPhillips Company
    Inventors: Jianping Zhang, Rafael L. Espinoza, Sergio R. Mohedas, Beatrice C. Ortego
  • Patent number: 6800664
    Abstract: A gas-agitated multiphase reactor system with multiple reaction zones comprising gas-liquid or gas-liquid-solid mixtures that can maximize the production rate while allowing better control of the temperature distribution and better control of the liquid and solid phases in the reactors. Still more particularly, this invention relates to a method for operating a pair of linked gas-agitated slurry reaction zones such that the hydrodynamic behavior and reactor performance of such reactor system are improved compared to that of a conventional slurry bed reactor.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: October 5, 2004
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Jianping Zhang, Sergio R. Mohedas, James D. Ortego, Jr.
  • Publication number: 20040192987
    Abstract: The present invention provides an apparatus and method for optimizing the degree of backmixing within a gas agitated multiphase reactor at a given gas linear velocity. The embodiments of the present invention involve novel configurations of the multiphase reactor internal structures. In general, the configurations comprise creating a dense area of internal structures in the central region and/or wall regions of the multiphase reactor.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 30, 2004
    Applicant: ConocoPhillips Company
    Inventors: Yi Jiang, Jianping Zhang, Rafael L. Espinoza, Harold A. Wright
  • Publication number: 20040192989
    Abstract: A process for producing hydrocarbons comprises providing a multi-tubular reactor having at least 100 tubes units containing a catalyst, each tube being between 2 and 5 meters tall and in thermal contact with a cooling fluid; feeding hydrogen and carbon monoxide to each tube at a linear gas superficial velocity less than about 60 cm/s; and converting the gas feedstream to hydrocarbons on the catalyst, wherein the yield of hydrocarbons in each tube is greater than 100 (kg hydrocarbons)/hr/(m3 reaction zone). Each tube may have an internal diameter greater than 2 centimeters. The catalyst may be active for Fischer Tropsch synthesis and may comprise cobalt or iron. The maximum difference in the radially-averaged temperature between two points that are axially spaced along the reactor is less than 15° C., preferably less than 10° C. The catalyst loading or intrinsic activity may vary along the length of the reactor.
    Type: Application
    Filed: March 24, 2003
    Publication date: September 30, 2004
    Applicant: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Jianping Zhang, Harold A. Wright, Todd H. Harkins
  • Patent number: 6760151
    Abstract: A semiconductor pump laser uses a depolarzer to depolarize the pump light entering the fiber amplifier. The depolarized light source is useful for reducing polarization dependent gain of fiber amplifiers. The pump laser includes one or more semiconductor, coherence-collapsed laser sources emitting polarized pump outputs, and one or more depolarizers disposed to depolarize the polarized pump output from the lasers. One or more fiber outputs are coupled to the one or more depolarizers to receive depolarized pump light. The depolarizer may include an N×M polarization preserving coupler having N inputs and M outputs, N and M being at least 2, an input to the depolarizer at a first coupler input, an output port from the depolarizer at a first coupler output. A polarization-controlling optical path is coupled between a second coupler output and a second coupler input.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: July 6, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: Edward C. Vail, Mehrdad Ziari, Bernard Fidric, Jianping Zhang, Stuart MacCormack, Vincent E. Dominic
  • Publication number: 20040048938
    Abstract: An apparatus for converting a gaseous and/or liquid feed fluid to gaseous and/or liquid products using a solid catalyst comprises a reactor, a liquid phase disposed within the reactor volume, a fixed catalyst at least partially disposed in the liquid phase, a cooling system having a cooling element in thermal contact with the liquid phase, a feed inlet positioned to feed the feed fluid into the reactor volume, and a fluid outlet in fluid communication with the liquid phase. The catalyst is contained in a catalyst container and the container may be adjacent to said cooling element, extend through said cooling element, or may surround the catalyst container. The catalyst may be a Fischer-Tropsch catalyst.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 11, 2004
    Applicant: Conoco Inc.
    Inventors: Sergio R. Mohedas, Rafael L. Espinoza, Jianping Zhang
  • Publication number: 20030149121
    Abstract: A method for water removal in hydrocarbon product reactors operating at Fischer-Tropsch conditions. The water removal decreases the concentration of water in the reactor. In one embodiment, a method of reducing the concentration of water in a Fischer-Tropsch reactor containing a water-rich hydrocarbon product includes removing water from the water-rich hydrocarbon product of the reactor by a water removal means so as to form a water-reduced hydrocarbon product and returning that product to the reactor.
    Type: Application
    Filed: December 16, 2002
    Publication date: August 7, 2003
    Applicant: Conoco Inc.
    Inventors: Jianping Zhang, Harold A. Wright, Yi Jiang, Joe D. Allison, Kenneth M. York, Sergio R. Mohedas, Vincent H. Melquist
  • Publication number: 20030134913
    Abstract: The present invention relates to a method and apparatus for water removal in multi-phase reactors operating at Fischer-Tropsch conditions. In a preferred embodiment of the present invention, a method of reducing the concentration of water in a multi-phase reactor for Fisher-Tropsch synthesis containing an expanded slurry bed and a water-rich slurry region includes removing a portion of water from the water-rich slurry from a predetermined region in the reactor, removing the water from the water-rich slurry to form a water-reduced slurry, and returning the water-reduced slurry back to the reactor. Preferably the water-rich slurry region is located between ½H to H and ½R to R, where H is the height of the expanded slurry bed and R is the radius of the expanded slurry bed.
    Type: Application
    Filed: December 10, 2002
    Publication date: July 17, 2003
    Applicant: Conoco Inc.
    Inventors: Jianping Zhang, Rafael L. Espinoza
  • Publication number: 20030125397
    Abstract: The present invention relates to a method and apparatus for reducing the maximum water concentration in multi-phase reactors operating at Fischer-Tropsch conditions. In a preferred embodiment of the present invention, a method of reducing the maximum concentration of water in a multi-phase reactor containing an expanded slurry bed and a water-rich slurry region for Fisher-Tropsch synthesis includes changing the flow structure of a predetermined region in the reactor. The flow structure may be changed by introducing a mixing enhancing fluid into the predetermined region, installing baffles into the predetermined region, or by other methods known in the art. Preferably the predetermined region is located between ½ H and H and between ½ R and R, where H is the height of the expanded slurry bed and R is the radius of the reactor.
    Type: Application
    Filed: July 11, 2002
    Publication date: July 3, 2003
    Applicant: Conoco Inc.
    Inventors: Jianping Zhang, Rafael L. Espinoza, Sergio R. Mohedas, Beatrice C. Ortego
  • Publication number: 20030114543
    Abstract: A gas-agitated multiphase reactor system for the synthesis of hydrocarbons gives high catalyst productivity and reactor capacity. The system includes operating a multi-phase reactor in the well-mixed gas flow regime, with a Peclet number less than 0.175 and a single pass conversion ranging from 35% to 75%, wherein the inlet superficial gas velocity decreases with the decreasing of the reactor aspect ratio, and is preferably at least 20 cm/sec.
    Type: Application
    Filed: December 14, 2001
    Publication date: June 19, 2003
    Inventors: Jianping Zhang, Rafael L. Espinoza, Sergio Mohedas
  • Publication number: 20030027875
    Abstract: A gas-agitated multiphase reactor system that is effective for enabling maximum reactor productivity or minimizing reactor volume comprising at least two stages with or without recycle, wherein inlet gas superficial velocity is at least 20 cm/sec at Fischer-Tropsch synthesis, yielding a total syngas conversion of greater than about 90%, while syngas conversion in each reactor is less than 60%. More specifically, the total reactor volume is held to a minimum such that minimum reactor volume is less than 0.02 cubic meters total reactor volume/(kg C5+/hr production).
    Type: Application
    Filed: July 25, 2002
    Publication date: February 6, 2003
    Applicant: Conoco Inc.
    Inventors: Jianping Zhang, Harold A. Wright