Patents by Inventor Joerg Rockenberger
Joerg Rockenberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20170200608Abstract: Doped semiconductor ink formulations, methods of making doped semiconductor ink formulations, methods of coating or printing thin films, methods of forming electronic devices and/or structures from the thin films, and methods for modifying and controlling the threshold voltage of a thin film transistor using the films are disclosed. A desired dopant may be added to an ink formulation comprising a Group IVA compound and a solvent, and then the ink may be printed on a substrate to form thin films and conductive structures/devices, such as thin film transistors. By adding a customized amount of the dopant to the ink prior to printing, the threshold voltage of a thin film transistor made from the doped semiconductor ink may be independently controlled upon activation of the dopant.Type: ApplicationFiled: March 27, 2017Publication date: July 13, 2017Inventors: Wenzhuo GUO, Fabio ZÜRCHER, Arvind KAMATH, Joerg ROCKENBERGER
-
Patent number: 9704713Abstract: In one aspect, the present invention provides undoped and doped siloxanes, germoxanes, and silagermoxanes that are substantially free from carbon and other undesired contaminants. In a second aspect, the present invention provides methods for making such undoped and doped siloxanes, germoxanes, and silagermoxanes. In still another aspect, the present invention provides compositions comprising undoped and/or doped siloxanes, germoxanes, and silagermoxanes and a solvent, and methods for forming undoped and doped dielectric films from such compositions. Undoped and/or doped siloxane compositions as described advantageously provide undoped and/or doped dielectric precursor inks that may be employed in forming substantially carbon-free undoped and/or doped dielectric films.Type: GrantFiled: April 6, 2016Date of Patent: July 11, 2017Assignee: Thin Film Electronics ASAInventors: Wenzhuo Guo, Brent Ridley, Joerg Rockenberger
-
Patent number: 9640390Abstract: Doped semiconductor ink formulations, methods of making doped semiconductor ink formulations, methods of coating or printing thin films, methods of forming electronic devices and/or structures from the thin films, and methods for modifying and controlling the threshold voltage of a thin film transistor using the films are disclosed. A desired dopant may be added to an ink formulation comprising a Group IVA compound and a solvent, and then the ink may be printed on a substrate to form thin films and conductive structures/devices, such as thin film transistors. By adding a customized amount of the dopant to the ink prior to printing, the threshold voltage of a thin film transistor made from the doped semiconductor ink may be independently controlled upon activation of the dopant.Type: GrantFiled: May 7, 2013Date of Patent: May 2, 2017Assignee: Thin Film Electronics ASAInventors: Wenzhuo Guo, Fabio Zurcher, Arvind Kamath, Joerg Rockenberger
-
Patent number: 9400953Abstract: Methods, algorithms, processes, circuits, and/or structures for laser patterning suitable for customized RFID designs are disclosed. In one embodiment, a method of laser patterning of an identification device can include the steps of: (i) depositing a patternable resist formulation on a substrate having configurable elements and/or materials thereon; (ii) irradiating the resist formulation with a laser tool sufficiently to change the solubility characteristics of the resist in a developer; and (iii) developing exposed areas of the resist using the developer. Embodiments of the present invention can advantageously provide a relatively low cost and high throughput approach for customized RFID devices.Type: GrantFiled: May 22, 2014Date of Patent: July 26, 2016Assignee: Thin Film Electronics ASAInventors: Criswell Choi, Joerg Rockenberger, Christopher Gudeman, J. Devin Mackenzie, Partick Smith, James Montague Cleeves
-
Patent number: 9336925Abstract: In one aspect, the present invention provides undoped and doped siloxanes, germoxanes, and silagermoxanes that are substantially free from carbon and other undesired contaminants. In a second aspect, the present invention provides methods for making such undoped and doped siloxanes, germoxanes, and silagermoxanes. In still another aspect, the present invention provides compositions comprising undoped and/or doped siloxanes, germoxanes, and silagermoxanes and a solvent, and methods for forming undoped and doped dielectric films from such compositions. Undoped and/or doped siloxane compositions as described advantageously provide undoped and/or doped dielectric precursor inks that may be employed in forming substantially carbon-free undoped and/or doped dielectric films.Type: GrantFiled: May 7, 2013Date of Patent: May 10, 2016Assignee: Thin Film Electronics ASAInventors: Wenzhuo Guo, Brent Ridley, Joerg Rockenberger
-
Patent number: 9196641Abstract: A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.Type: GrantFiled: October 2, 2012Date of Patent: November 24, 2015Assignee: Thin Film Electronics ASAInventors: Arvind Kamath, James Montague Cleeves, Joerg Rockenberger, Patrick Smith, Fabio Zurcher
-
Patent number: 9045653Abstract: Embodiments relate to printing features from an ink containing a material precursor. In some embodiments, the material includes an electrically active material, such as a semiconductor, a metal, or a combination thereof. In another embodiment, the material includes a dielectric. The embodiments provide improved printing process conditions that allow for more precise control of the shape, profile and dimensions of a printed line or other feature. The composition(s) and/or method(s) improve control of pinning by increasing the viscosity and mass loading of components in the ink. An exemplary method thus includes printing an ink comprising a material precursor and a solvent in a pattern on the substrate; precipitating the precursor in the pattern to form a pinning line; substantially evaporating the solvent to form a feature of the material precursor defined by the pinning line; and converting the material precursor to the patterned material.Type: GrantFiled: August 23, 2013Date of Patent: June 2, 2015Assignee: Thin Film Electronics ASAInventors: Erik Scher, Steven Molesa, Joerg Rockenberger, Arvind Kamath, Ikuo Mori, Wenzhuo Guo, Dmitry Karshtedt, Vladimir K. Dioumaev
-
Patent number: 8960558Abstract: A RF MOS- or nonlinear device-based surveillance identification tag, and methods for its manufacture and use. The tag includes an inductor, a capacitor plate coupled to the inductor, a dielectric film on the capacitor plate, a semiconductor component on the dielectric film, and a conductor providing electrical communication between the semiconductor component and the inductor. The method of manufacture includes depositing a semiconductor material/precursor on a dielectric film; forming a semiconductor component from the semiconductor material/precursor; forming a conductive structure at least partly on the semiconductor component; and etching the electrically functional substrate to form an inductor and/or a second capacitor plate. The method of use includes causing/inducing a current in the tag sufficient to generate detectable electromagnetic radiation; detecting the radiation; and selectively deactivating the tag.Type: GrantFiled: February 1, 2012Date of Patent: February 24, 2015Assignee: Thin Film Electronics ASAInventors: J. Devin MacKenzie, James Montague Cleeves, Vik Pavate, Christopher Gudeman, Fabio Zurcher, Max Davis, Dan Good, Joerg Rockenberger
-
Patent number: 8900915Abstract: Epitaxial structures, methods of making epitaxial structures, and devices incorporating such epitaxial structures are disclosed. The methods and the structures employ a liquid-phase Group IVA semiconductor element precursor ink (e.g., including a cyclo- and/or polysilane) and have a relatively good film quality (e.g., texture, density and/or purity). The Group IVA semiconductor element precursor ink forms an epitaxial film or feature when deposited on a (poly)crystalline substrate surface and heated sufficiently for the Group IVA semiconductor precursor film or feature to adopt the (poly)crystalline structure of the substrate surface. Devices incorporating a selective emitter that includes the present epitaxial structure may exhibit improved power conversion efficiency relative to a device having a selective emitter made without such a structure due to the improved film quality and/or the perfect interface formed in regions between the epitaxial film and contacts formed on the film.Type: GrantFiled: April 6, 2011Date of Patent: December 2, 2014Assignee: Thin Film Electronics ASAInventors: Joerg Rockenberger, Fabio Zürcher, Mao Takashima
-
Publication number: 20140299883Abstract: A self-aligned top-gate thin film transistor (TFT) and a method of forming such a thin film transistor, by forming a semiconductor thin film layer; printing a doped glass pattern thereon, a gap in the doped glass pattern defining a channel region of the TFT; forming a gate electrode on or over the channel region, the gate electrode comprising a gate dielectric film and a gate conductor thereon; and diffusing a dopant from the doped glass pattern into the semiconductor thin film layer.Type: ApplicationFiled: June 20, 2014Publication date: October 9, 2014Inventors: Joerg ROCKENBERGER, James Montague Cleeves, Arvind Kamath
-
Patent number: 8853677Abstract: Metal ink compositions, methods of forming such compositions, and methods of forming conductive layers are disclosed. The ink composition includes a bulk metal, a transition metal source, and an organic solvent. The transition metal source may be a transition metal capable of forming a silicide, in an amount providing from 0.01 to 50 at. % of the transition metal relative to the bulk metal. Conductive structures may be made using such ink compositions by forming a silicon-containing layer on a substrate, printing a metal ink composition on the silicon-containing layer, and curing the composition. The metal inks of the present invention have high conductivity and form low resistivity contacts with silicon, and reduce the number of inks and printing steps needed to fabricate integrated circuits.Type: GrantFiled: June 16, 2011Date of Patent: October 7, 2014Assignee: Thin Film Electronics ASAInventors: Joerg Rockenberger, Yu Chen, Fabio Zürcher, Scott Haubrich
-
Patent number: 8846507Abstract: Compositions and methods for controlled polymerization and/or oligomerization of hydrosilanes compounds including those of the general formulae SinH2n and SinH2n+2 as well as alkyl- and arylsilanes, to produce soluble silicon polymers as a precursor to silicon films having low carbon content.Type: GrantFiled: May 17, 2013Date of Patent: September 30, 2014Assignee: Thin Film Electronics ASAInventors: Dmitry Karshtedt, Joerg Rockenberger, Fabio Zurcher, Brent Ridley, Erik Scher
-
Patent number: 8840857Abstract: Heterocyclosilane compounds and methods for making the same. Such compounds (and/or ink compositions containing the same) are useful for printing or spin coating a doped silane film onto a substrate that can easily be converted into a doped amorphous silicon film (that may also be hydrogenated to some extent) or doped polycrystalline semiconductor film suitable for electronic devices. Thus, the present invention advantageously provides commercial qualities and quantities of doped semiconductor films from a “doped liquid silicon” composition.Type: GrantFiled: June 12, 2012Date of Patent: September 23, 2014Assignee: Thin Film Electronics ASAInventors: Wenzhuo Guo, Fabio Zürcher, Joerg Rockenberger, Klaus Kunze, Vladimir K. Dioumaev, Brent Ridley, James Montague Cleeves
-
Patent number: 8796125Abstract: A self-aligned top-gate thin film transistor (TFT) and a method of forming such a thin film transistor, by forming a semiconductor thin film layer; printing a doped glass pattern thereon, a gap in the doped glass pattern defining a channel region of the TFT; forming a gate electrode on or over the channel region, the gate electrode comprising a gate dielectric film and a gate conductor thereon; and diffusing a dopant from the doped glass pattern into the semiconductor thin film layer.Type: GrantFiled: June 12, 2007Date of Patent: August 5, 2014Assignee: Kovio, Inc.Inventors: Joerg Rockenberger, James Montague Cleeves, Arvind Kamath
-
Patent number: 8758982Abstract: Methods, algorithms, processes, circuits, and/or structures for laser patterning suitable for customized RFID designs are disclosed. In one embodiment, a method of laser patterning of an identification device can include the steps of: (i) depositing a patternable resist formulation on a substrate having configurable elements and/or materials thereon; (ii) irradiating the resist formulation with a laser tool sufficiently to change the solubility characteristics of the resist in a developer; and (iii) developing exposed areas of the resist using the developer. Embodiments of the present invention can advantageously provide a relatively low cost and high throughput approach for customized RFID devices.Type: GrantFiled: November 8, 2006Date of Patent: June 24, 2014Assignee: Thin Film Electronics ASAInventors: Criswell Choi, Patrick Smith, James Montague Cleeves, Joerg Rockenberger, Christopher Gudeman, J. Devin MacKenzie
-
Publication number: 20140094004Abstract: A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.Type: ApplicationFiled: October 2, 2012Publication date: April 3, 2014Inventors: Arvind Kamath, James Montague Cleeves, Joerg Rockenberger, Patrick Smith, Fabio Zürcher
-
Patent number: 8624049Abstract: Dopant-group substituted (cyclo)silane compounds, liquid-phase compositions containing such compounds, and methods for making the same. Such compounds (and/or ink compositions containing the same) are useful for printing or spin coating a doped silane film onto a substrate that can easily be converted into a doped amorphous or polycrystalline silicon film suitable for electronic devices. Thus, the present invention advantageously provides commercial qualities and quantities of doped semiconductor films from a doped “liquid silicon” composition.Type: GrantFiled: January 18, 2010Date of Patent: January 7, 2014Assignee: Kovio, Inc.Inventors: Wenzhuo Guo, Vladimir K. Dioumaev, Brent Ridley, Fabio Zürcher, Joerg Rockenberger, James Montague Cleeves
-
Patent number: 8617992Abstract: Methods of forming contacts (and optionally, local interconnects) using an ink comprising a silicide-forming metal, electrical devices such as diodes and/or transistors including such contacts and (optional) local interconnects, and methods for forming such devices are disclosed. Electrical devices, such as diodes and transistors may be made using such printed contact and/or local interconnects. A metal ink may be printed for contacts as well as for local interconnects at the same time, or in the alternative, the printed metal can act as a seed for electroless deposition of other metals if different metals are desired for the contact and the interconnect lines. This approach advantageously reduces the number of processing steps and does not necessarily require any etching.Type: GrantFiled: March 22, 2012Date of Patent: December 31, 2013Assignee: Kovio, Inc.Inventors: Aditi Chandra, Arvind Kamath, James Montague Cleeves, Joerg Rockenberger, Mao Takashima, Erik Scher
-
Publication number: 20130344301Abstract: Embodiments relate to printing features from an ink containing a material precursor. In some embodiments, the material includes an electrically active material, such as a semiconductor, a metal, or a combination thereof. In another embodiment, the material includes a dielectric. The embodiments provide improved printing process conditions that allow for more precise control of the shape, profile and dimensions of a printed line or other feature. The composition(s) and/or method(s) improve control of pinning by increasing the viscosity and mass loading of components in the ink. An exemplary method thus includes printing an ink comprising a material precursor and a solvent in a pattern on the substrate; precipitating the precursor in the pattern to form a pinning line; substantially evaporating the solvent to form a feature of the material precursor defined by the pinning line; and converting the material precursor to the patterned material.Type: ApplicationFiled: August 23, 2013Publication date: December 26, 2013Inventors: Erik SCHER, Steven MOLESA, Joerg ROCKENBERGER, Arvind KAMATH, Ikuo MORI, Wenzhuo GUO, Dmitry KARSHTEDT, Vladimir DIOUMAEV
-
Patent number: 8603426Abstract: A method of making hydrogenated Group IVA compounds having reduced metal-based impurities, compositions and inks including such Group IVA compounds, and methods for forming a semiconductor thin film. Thin semiconducting films prepared according to the present invention generally exhibit improved conductivity, film morphology and/or carrier mobility relative to an otherwise identical structure made by an identical process, but without the washing step. In addition, the properties of the present thin film are generally more predictable than those of films produced from similarly prepared (cyclo)silanes that have not been washed according to the present invention.Type: GrantFiled: December 28, 2012Date of Patent: December 10, 2013Assignee: Kovio, Inc.Inventors: Klaus Kunze, Wenzhuo Guo, Fabio Zürcher, Mao Takashima, Laila Francisco, Joerg Rockenberger, Brent Ridley