Patents by Inventor Joerg Rockenberger

Joerg Rockenberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110240997
    Abstract: Epitaxial structures, methods of making epitaxial structures, and devices incorporating such epitaxial structures are disclosed. The methods and the structures employ a liquid-phase Group IVA semiconductor element precursor ink (e.g., including a cyclo- and/or polysilane) and have a relatively good film quality (e.g., texture, density and/or purity). The Group IVA semiconductor element precursor ink forms an epitaxial film or feature when deposited on a (poly)crystalline substrate surface and heated sufficiently for the Group IVA semiconductor precursor film or feature to adopt the (poly)crystalline structure of the substrate surface. Devices incorporating a selective emitter that includes the present epitaxial structure may exhibit improved power conversion efficiency relative to a device having a selective emitter made without such a structure due to the improved film quality and/or the perfect interface formed in regions between the epitaxial film and contacts formed on the film.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 6, 2011
    Inventors: Joerg ROCKENBERGER, Fabio Zürcher, Mao Takashima
  • Publication number: 20110197783
    Abstract: Doped polysilanes, inks containing the same, and methods for their preparation and use are disclosed. The doped polysilane generally has the formula H-[AaHb(DRx)m]q-[(AcHdR1e)n]p—H, where each instance of A is independently Si or Ge, and D is B, P, As or Sb. In preferred embodiments, R is H, -AfHf+1R2f, alkyl, aryl or substituted aryl, and R1 is independently H, halogen, aryl or substituted aryl. In one aspect, the method of making a doped poly(aryl)silane generally includes the steps of combining a doped silane of the formula AaHb+2(DRx)m (optionally further including a silane of the formula AcHd+2R1e) with a catalyst of the formula R4wR5yMXz (or an immobilized derivative thereof) to form a doped poly(aryl)silane, then removing the metal M. In another aspect, the method of making a doped polysilane includes the steps of halogenating a doped polyarylsilane, and reducing the doped halopolysilane with a metal hydride to form the doped polysilane.
    Type: Application
    Filed: April 25, 2011
    Publication date: August 18, 2011
    Inventors: Wenzhuo Guo, Vladimir K. Dioumaev, Joerg Rockenberger
  • Publication number: 20110178321
    Abstract: Dopant-group substituted (cyclo)silane compounds, liquid-phase compositions containing such compounds, and methods for making the same. Such compounds (and/or ink compositions containing the same) are useful for printing or spin coating a doped silane film onto a substrate that can easily be converted into a doped amorphous or polycrystalline silicon film suitable for electronic devices. Thus, the present invention advantageously provides commercial qualities and quantities of doped semiconductor films from a doped “liquid silicon” composition.
    Type: Application
    Filed: January 18, 2010
    Publication date: July 21, 2011
    Inventors: Wenzhuo GUO, Vladimir K. Dioumaev, Brent Ridley, Fabio Zürcher, Joerg Rockenberger, James Montague Cleeves
  • Patent number: 7981482
    Abstract: Methods for forming doped silane and/or semiconductor thin films, doped liquid phase silane compositions useful in such methods, and doped semiconductor thin films and structures. The composition is generally liquid at ambient temperatures and includes a Group IVA atom source and a dopant source. By irradiating a doped liquid silane during at least part of its deposition, a thin, substantially uniform doped oligomerized/polymerized silane film may be formed on a substrate. Such irradiation is believed to convert the doped silane film into a relatively high-molecular weight species with relatively high viscosity and relatively low volatility, typically by cross-linking, isomerization, oligomerization and/or polymerization. A film formed by the irradiation of doped liquid silanes can later be converted (generally by heating and annealing/recrystallization) into a doped, hydrogenated, amorphous silicon film or a doped, at least partially polycrystalline silicon film suitable for electronic devices.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: July 19, 2011
    Assignee: Kovio, Inc.
    Inventors: Fabio Zürcher, Wenzhuo Guo, Joerg Rockenberger, Vladimir K. Dioumaev, Brent Ridley, Klaus Kunze, James Montague Cleeves
  • Patent number: 7977240
    Abstract: Metal ink compositions, methods of forming such compositions, and methods of forming conductive layers are disclosed. The ink composition includes a bulk metal, a transition metal source, and an organic solvent. The transition metal source may be a transition metal capable of forming a silicide, in an amount providing from 0.01 to 50 at. % of the transition metal relative to the bulk metal. Conductive structures may be made using such ink compositions by forming a silicon-containing layer on a substrate, printing a metal ink composition on the silicon-containing layer, and curing the composition. The metal inks of the present invention have high conductivity and form low resistivity contacts with silicon, and reduce the number of inks and printing steps needed to fabricate integrated circuits.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: July 12, 2011
    Assignee: Kovio, Inc.
    Inventors: Joerg Rockenberger, Yu Chen, Fabio Zürcher, Scott Haubrich
  • Patent number: 7951892
    Abstract: Doped polysilanes, inks containing the same, and methods for their preparation and use are disclosed. The doped polysilane generally has the formula H-[AaHb(DRx)m]q-[(AcHdR1e)n]p—H, where each instance of A is independently Si or Ge, and D is B, P, As or Sb. In preferred embodiments, R is H, -AfHf+1R2f, alkyl, aryl or substituted aryl, and R1 is independently H, halogen, aryl or substituted aryl. In one aspect, the method of making a doped poly(aryl)silane generally includes the steps of combining a doped silane of the formula AaHb+2(DRx)m (optionally further including a silane of the formula AcHd+2R1e) with a catalyst of the formula R4wR5yMXz (or an immobilized derivative thereof) to form a doped poly(aryl)silane, then removing the metal M. In another aspect, the method of making a doped polysilane includes the steps of halogenating a doped polyarylsilane, and reducing the doped halopolysilane with a metal hydride to form the doped polysilane.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: May 31, 2011
    Assignee: Kovio, Inc.
    Inventors: Wenzhuo Guo, Vladimir K. Dioumaev, Joerg Rockenberger
  • Publication number: 20110104877
    Abstract: Compositions, inks and methods for forming a patterned silicon-containing film and patterned structures including such a film. The composition generally includes (a) passivated semiconductor nanoparticles and (b) first and second cyclic Group IVA compounds in which the cyclic species predominantly contains Si and/or Ge atoms. The ink generally includes the composition and a solvent in which the composition is soluble. The method generally includes the steps of (1) printing the composition or ink on a substrate to form a pattern, and (2) curing the patterned composition or ink. In an alternative embodiment, the method includes the steps of (i) curing either a semiconductor nanoparticle composition or at least one cyclic Group IVA compound to form a thin film, (ii) coating the thin film with the other, and (iii) curing the coated thin film to form a semiconducting thin film.
    Type: Application
    Filed: January 4, 2011
    Publication date: May 5, 2011
    Inventors: Klaus Kunze, Scott Haubrich, Fabio Zurcher, Brent Ridley, Joerg Rockenberger
  • Patent number: 7879696
    Abstract: Compositions, inks and methods for forming a patterned silicon-containing film and patterned structures including such a film. The composition generally includes (a) passivated semiconductor nanoparticles and (b) first and second cyclic Group IVA compounds in which the cyclic species predominantly contains Si and/or Ge atoms. The ink generally includes the composition and a solvent in which the composition is soluble. The method generally includes the steps of (1) printing the composition or ink on a substrate to form a pattern, and (2) curing the patterned composition or ink. In an alternative embodiment, the method includes the steps of (i) curing either a semiconductor nanoparticle composition or at least one cyclic Group IVA compound to form a thin film, (ii) coating the thin film with the other, and (iii) curing the coated thin film to form a semiconducting thin film.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: February 1, 2011
    Assignee: Kovio, Inc.
    Inventors: Klaus Kunze, Scott Haubrich, Fabio Zurcher, Brent Ridley, Joerg Rockenberger
  • Publication number: 20100244133
    Abstract: A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.
    Type: Application
    Filed: June 9, 2010
    Publication date: September 30, 2010
    Inventors: Arvind KAMATH, James Montague Cleeves, Joerg Rockenberger, Patrick Smith, Fabio Zürcher
  • Patent number: 7799302
    Abstract: A method of making hydrogenated Group IVA compounds having reduced metal-based impurities, compositions and inks including such Group IVA compounds, and methods for forming a semiconductor thin film. Thin semiconducting films prepared according to the present invention generally exhibit improved conductivity, film morphology and/or carrier mobility relative to an otherwise identical structure made by an identical process, but without the washing step. In addition, the properties of the present thin film are generally more predictable than those of films produced from similarly prepared (cyclo)silanes that have not been washed according to the present invention.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: September 21, 2010
    Assignee: Kovio, Inc.
    Inventors: Klaus Kunze, Wenzhuo Guo, Fabio Zurcher, Mao Takashima, Laila Francisco, Joerg Rockenberger, Brent Ridley
  • Patent number: 7767261
    Abstract: Compositions, inks and methods for forming a patterned silicon-containing film and patterned structures including such a film. The composition generally includes (a) passivated semiconductor nanoparticles and (b) first and second cyclic Group IVA compounds in which the cyclic species predominantly contains Si and/or Ge atoms. The ink generally includes the composition and a solvent in which the composition is soluble. The method generally includes the steps of (1) printing the composition or ink on a substrate to form a pattern, and (2) curing the patterned composition or ink. In an alternative embodiment, the method includes the steps of (i) curing either a semiconductor nanoparticle composition or at least one cyclic Group IVA compound to form a thin film, (ii) coating the thin film with the other, and (iii) curing the coated thin film to form a semiconducting thin film.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: August 3, 2010
    Assignee: Kovio, Inc.
    Inventors: Klaus Kunze, Scott Haubrich, Fabio Zurcher, Brent Ridley, Joerg Rockenberger
  • Patent number: 7767520
    Abstract: A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: August 3, 2010
    Assignee: Kovio, Inc.
    Inventors: Arvind Kamath, James Montague Cleeves, Joerg Rockenberger, Patrick Smith, Fabio Zürcher
  • Patent number: 7723457
    Abstract: Polysilanes, inks containing the same, and methods for their preparation are disclosed. The polysilane generally has the formula H-[(AHR)n(c-AmHpm-2)q]—H, where each instance of A is independently Si or Ge; R is H, -AaHa+1Ra, halogen, aryl or substituted aryl; (n+a)?10 if q=0, q?3 if n=0, and (n+q)?6 if both n and q?0; p is 1 or 2; and m is from 3 to 12. In one aspect, the method generally includes the steps of combining a silane compound of the formula AHaR14-a, the formula AkHgR1?h and/or the formula c-AmHpmR1fm with a catalyst of the formula R4xR5yMXz (or an immobilized derivative thereof) to form a poly(aryl)silane; then washing the poly(aryl)silane with an aqueous washing composition and contacting the poly(aryl)silane with an adsorbent to remove the metal M. In another aspect, the method includes the steps of halogenating a polyarylsilane to form a halopolysilane; and reducing the halopolysilane with a metal hydride to form the polysilane.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: May 25, 2010
    Assignee: Kovio, Inc.
    Inventors: Wenzhuo Guo, Vladimir K. Dioumaev, Joerg Rockenberger, Brent Ridley
  • Patent number: 7701011
    Abstract: An electronic device, including a substrate, a plurality of first semiconductor islands on the substrate, a plurality of second semiconductor islands on the substrate, a first dielectric film on the first subset of the semiconductor islands, second dielectric film on the second semiconductor islands, and a metal layer in electrical contact with the first and second semiconductor islands. The first semiconductor islands and the first dielectric film contain a first diffusible dopant, and the second semiconductor islands and the second dielectric layer film contain a second diffusible dopant different from the first diffusible dopant. The present electronic device can be manufactured using printing technologies, thereby enabling high-throughput, low-cost manufacturing of electrical circuits on a wide variety of substrates.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: April 20, 2010
    Assignee: Kovio, Inc.
    Inventors: Arvind Kamath, James Montague Cleeves, Joerg Rockenberger, Patrick Smith, Fabio Zürcher
  • Patent number: 7674926
    Abstract: Dopant-group substituted (cyclo)silane compounds, liquid-phase compositions containing such compounds, and methods for making the same. Such compounds (and/or ink compositions containing the same) are useful for printing or spin coating a doped silane film onto a substrate that can easily be converted into a doped amorphous or polycrystalline silicon film suitable for electronic devices. Thus, the present invention advantageously provides commercial qualities and quantities of doped semiconductor films from a doped “liquid silicon” composition.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: March 9, 2010
    Assignee: Kovio, Inc.
    Inventors: Wenzhuo Guo, Vladimir K. Dioumaev, Brent Ridley, Fabio Zūrcher, Joerg Rockenberger, James Montague Cleeves
  • Publication number: 20100022078
    Abstract: Aluminum metal ink compositions, methods of forming such compositions, and methods of forming aluminum metal layers and/or patterns are disclosed. The ink composition includes an aluminum metal precursor and an organic solvent. Conductive structures may be made using such ink compositions by printing or coating the aluminum precursor ink on a substrate (decomposing the aluminum metal precursors in the ink) and curing the composition. The present aluminum precursor inks provide aluminum films having high conductivity, and reduce the number of inks and printing steps needed to fabricate printed, integrated circuits.
    Type: Application
    Filed: July 24, 2009
    Publication date: January 28, 2010
    Inventors: Joerg ROCKENBERGER, Fabio Zürcher, Wenzhuo Guo
  • Patent number: 7553545
    Abstract: Compositions, inks and methods for forming a patterned silicon-containing film and patterned structures including such a film. The composition generally includes (a) passivated semiconductor nanoparticles and (b) first and second cyclic Group IVA compounds in which the cyclic species predominantly contains Si and/or Ge atoms. The ink generally includes the composition and a solvent in which the composition is soluble. The method generally includes the steps of (1) printing the composition or ink on a substrate to form a pattern, and (2) curing the patterned composition or ink. In an alternative embodiment, the method includes the steps of (i) curing either a semiconductor nanoparticle composition or at least one cyclic Group IVA compound to form a thin film, (ii) coating the thin film with the other, and (iii) curing the coated thin film to form a semiconducting thin film.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: June 30, 2009
    Assignee: Kovio, Inc.
    Inventors: Klaus Kunze, Scott Haubrich, Fabio Zurcher, Brent Ridley, Joerg Rockenberger
  • Publication number: 20090065776
    Abstract: Embodiments relate to printing features from an ink containing a material precursor. In some embodiments, the material includes an electrically active material, such as a semiconductor, a metal, or a combination thereof. In another embodiment, the material includes a dielectric. The embodiments provide improved printing process conditions that allow for more precise control of the shape, profile and dimensions of a printed line or other feature. The composition(s) and/or method(s) improve control of pinning by increasing the viscosity and mass loading of components in the ink. An exemplary method thus includes printing an ink comprising a material precursor and a solvent in a pattern on the substrate; precipitating the precursor in the pattern to form a pinning line; substantially evaporating the solvent to form a feature of the material precursor defined by the pinning line; and converting the material precursor to the patterned material.
    Type: Application
    Filed: May 2, 2008
    Publication date: March 12, 2009
    Inventors: Erik SCHER, Steven Molesa, Joerg Rockenberger, Arvind Kamath, Ikuo Mori
  • Patent number: 7498015
    Abstract: A method of making hydrogenated Group IVA compounds having reduced metal-based impurities, compositions and inks including such Group IVA compounds, and methods for forming a semiconductor thin film. Thin semiconducting films prepared according to the present invention generally exhibit improved conductivity, film morphology and/or carrier mobility relative to an otherwise identical structure made by an identical process, but without the washing step. In addition, the properties of the present thin film are generally more predictable than those of films produced from similarly prepared (cyclo)silanes that have not been washed according to the present invention.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: March 3, 2009
    Assignee: Kovio, Inc.
    Inventors: Klaus Kunze, Wenzhuo Guo, Fabio Zurcher, Mao Ito, Laila Francisco, Joerg Rockenberger, Brent Ridley
  • Publication number: 20090053536
    Abstract: Compositions, inks and methods for forming a patterned silicon-containing film and patterned structures including such a film. The composition generally includes (a) passivated semiconductor nanoparticles and (b) first and second cyclic Group IVA compounds in which the cyclic species predominantly contains Si and/or Ge atoms. The ink generally includes the composition and a solvent in which the composition is soluble. The method generally includes the steps of (1) printing the composition or ink on a substrate to form a pattern, and (2) curing the patterned composition or ink. In an alternative embodiment, the method includes the steps of (i) curing either a semiconductor nanoparticle composition or at least one cyclic Group IVA compound to form a thin film, (ii) coating the thin film with the other, and (iii) curing the coated thin film to form a semiconducting thin film.
    Type: Application
    Filed: October 29, 2008
    Publication date: February 26, 2009
    Inventors: Klaus KUNZE et al., Scott Haubrich, Fabio Zurcher, Brent Ridley, Joerg Rockenberger