Patents by Inventor Johannes Wang

Johannes Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6965987
    Abstract: The present invention provides a system and method for managing load and store operations necessary for reading from and writing to memory or I/O in a superscalar RISC architecture environment. To perform this task, a load store unit is provided whose main purpose is to make load requests out of order whenever possible to get the load data back for use by an instruction execution unit as quickly as possible. A load operation can only be performed out of order if there are no address collisions and no write pendings. An address collision occurs when a read is requested at a memory location where an older instruction will be writing. Write pending refers to the case where an older instruction requests a store operation, but the store address has not yet been calculated. The data cache unit returns 8 bytes of unaligned data. The load/store unit aligns this data properly before it is returned to the instruction execution unit.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: November 15, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Cheryl Senter Brashears, Johannes Wang, Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20050251653
    Abstract: A system and method for extracting complex, variable length computer instructions from a stream of complex instructions each subdivided into a variable number of instructions bytes, and aligning instruction bytes of individual ones of the complex instructions. The system receives a portion of the stream of complex instructions and extracts a first set of instruction bytes starting with the first instruction bytes, using an extract shifter. The set of instruction bytes are then passed to an align latch where they are aligned and output to a next instruction detector. The next instruction detector determines the end of the first instruction based on said set of instruction bytes. An extract shifter is used to extract and provide the next set of instruction bytes to an align shifter which aligns and outputs the next instruction. The process is then repeated for the remaining instruction bytes in the stream of complex instructions.
    Type: Application
    Filed: June 28, 2005
    Publication date: November 10, 2005
    Applicant: Transmeta Corporation
    Inventors: Brett Coon, Yoshiyuki Miyayama, Le Trong Nguyen, Johannes Wang
  • Patent number: 6959375
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: October 25, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6957320
    Abstract: The present invention provides a system and method for managing load and store operations necessary for reading from and writing to memory or I/O in a superscalar RISC architecture environment. To perform this task, a load store unit is provided whose main purpose is to make load requests out of order whenever possible to get the load data back for use by an instruction execution unit as quickly as possible. A load operation can only be performed out of order if there are no address collisions and no write pendings. An address collision occurs when a read is requested at a memory location where an older instruction will be writing. Write pending refers to the case where an older instruction requests a store operation, but the store address has not yet been calculated. The data cache unit returns 8 bytes of unaligned data. The load/store unit aligns this data properly before it is returned to the instruction execution unit.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: October 18, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Cheryl D. Senter, Johannes Wang
  • Publication number: 20050228973
    Abstract: An system and method for retiring instructions in a superscalar microprocessor which executes a program comprising a set of instructions having a predetermined program order, the retirement system for simultaneously retiring groups of instructions executed in or out of order by the microprocessor. The retirement system comprises a done block for monitoring the status of the instructions to determine which instruction or group of instructions have been executed, a retirement control block for determining whether each executed instruction is retirable, a temporary buffer for storing results of instructions executed out of program order, and a register array for storing retirable-instruction results.
    Type: Application
    Filed: June 10, 2005
    Publication date: October 13, 2005
    Applicant: Seiko Epson Corporation
    Inventors: Johannes Wang, Sanjiv Garg, Trevor Deosaran
  • Patent number: 6954847
    Abstract: A system and method for extracting complex, variable length computer instructions from a stream of complex instructions each subdivided into a variable number of instructions bytes, and aligning instruction bytes of individual ones of the complex instructions. The system receives a portion of the stream of complex instructions and extracts a first set of instruction bytes starting with the first instruction bytes, using an extract shifter. The set of instruction bytes are then passed to an align latch where they are aligned and output to a next instruction detector. The next instruction detector determines the end of the first instruction based on said set of instruction bytes. An extract shifter is used to extract and provide the next set of instruction bytes to an align shifter which aligns and outputs the next instruction. The process is then repeated for the remaining instruction bytes in the stream of complex instructions.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: October 11, 2005
    Assignee: Transmeta Corporation
    Inventors: Brett Coon, Yoshiyuki Miyayama, Le Trong Nguyen, Johannes Wang
  • Patent number: 6948052
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: September 20, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6941447
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: September 6, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Le-Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20050188184
    Abstract: The present invention provides a system and method for managing load and store operations necessary for reading from and writing to memory or I/O in a superscalar RISC architecture environment. To perform this task, a load store unit is provided whose main purpose is to make load requests out of order whenever possible to get the load data back for use by an instruction execution unit as quickly as possible. A load operation can only be performed out of order if there are no address collisions and no write pendings. An address collision occurs when a read is requested at a memory location where an older instruction will be writing. Write pending refers to the case where an older instruction requests a store operation, but the store address has not yet been calculated. The data cache unit returns 8 bytes of unaligned data. The load/store unit aligns this data properly before it is returned to the instruction execution unit.
    Type: Application
    Filed: April 18, 2005
    Publication date: August 25, 2005
    Applicant: Seiko Epson Corporation
    Inventors: Cheryl Senter, Johannes Wang
  • Patent number: 6934829
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: August 23, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6920548
    Abstract: An system and method for retiring instructions in a superscalar microprocessor which executes a program comprising a set of instructions having a predetermined program order, the retirement system for simultaneously retiring groups of instructions executed in or out of order by the microprocessor. The retirement system comprises a done block for monitoring the status of the instructions to determine which instruction or group of instructions have been executed, a retirement control block for determining whether each executed instruction is retirable, a temporary buffer for storing results of instructions executed out of program order, and a register array for storing retirable-instruction results.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: July 19, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Johannes Wang, Sanjiv Garg, Trevor Deosaran
  • Patent number: 6915412
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: July 5, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20040186983
    Abstract: An system and method for retiring instructions in a superscalar microprocessor which executes a program comprising a set of instructions having a predetermined program order, the retirement system for simultaneously retiring groups of instructions executed in or out of order by the microprocessor. The retirement system comprises a done block for monitoring the status of the instructions to determine which instruction or group of instructions have been executed, a retirement control block for determining whether each executed instruction is retirable, a temporary buffer for storing results of instructions executed out of program order, and a register array for storing retirable-instruction results.
    Type: Application
    Filed: April 2, 2004
    Publication date: September 23, 2004
    Applicant: Seiko Epson Corporation
    Inventors: Johannes Wang, Sanjiv Garg, Trevor Deosaran
  • Patent number: 6775761
    Abstract: An system and method for retiring instructions in a superscalar microprocessor which executes a program comprising a set of instructions having a predetermined program order, the retirement system for simultaneously retiring groups of instructions executed in or out of order by the microprocessor. The retirement system comprises a done block for monitoring the status of the instructions to determine which instruction or group of instructions have been executed, a retirement control block for determining whether each executed instruction is retirable, a temporary buffer for storing results of instructions executed out of program order, and a register array for storing retirable-instruction results.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: August 10, 2004
    Assignee: Seiko Epson Corporation
    Inventors: Johannes Wang, Sanjiv Garg, Trevor Deosaran
  • Publication number: 20040128487
    Abstract: The present invention provides a system and method for managing load and store operations necessary for reading from and writing to memory or I/O in a superscalar RISC architecture environment. To perform this task, a load store unit is provided whose main purpose is to make load requests out of order whenever possible to get the load data back for use by an instruction execution unit as quickly as possible. A load operation can only be performed out of order if there are no address collisions and no write pendings. An address collision occurs when a read is requested at a memory location where an older instruction will be writing. Write pending refers to the case where an older instruction requests a store operation, but the store address has not yet been calculated. The data cache unit returns 8 bytes of unaligned data. The load/store unit aligns this data properly before it is returned to the instruction execution unit.
    Type: Application
    Filed: November 17, 2003
    Publication date: July 1, 2004
    Applicant: Seiko Epson Corporation
    Inventors: Cheryl Senter Brashears, Johannes Wang, Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20040093485
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: November 5, 2003
    Publication date: May 13, 2004
    Applicant: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20040093483
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: October 31, 2003
    Publication date: May 13, 2004
    Applicant: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20040093482
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: November 5, 2003
    Publication date: May 13, 2004
    Applicant: Seiko Epson Corporation
    Inventors: Le-Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6735685
    Abstract: The present invention provides a system and method for managing load and store operations necessary for reading from and writing to memory or I/O in a superscalar RISC architecture environment. To perform this task, a load/store unit is provided whose main purpose is to make load requests out-of-order whenever possible to get the load data back for use by an instruction execution unit as quickly as possible. A load operation can only be performed out-of-order if there are no address collisions and no write pendings. An address collision occurs when a read is requested at a memory location where an older instruction will be writing. Write pending refers to the case where an older instruction requests a store operation, but the store address has not yet been calculated. The data cache unit returns 8 bytes of unaligned data. The load/store unit aligns this data properly before it is returned to the instruction execution unit.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: May 11, 2004
    Assignee: Seiko Epson Corporation
    Inventors: Cheryl D. Senter, Johannes Wang
  • Publication number: 20040054872
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: September 12, 2003
    Publication date: March 18, 2004
    Applicant: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang