Patents by Inventor John A. Rogers

John A. Rogers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11371072
    Abstract: An automated system for identifying in a biological sample microorganisms and their antimicrobial susceptibility (AST). The system provided an automated platform for preparing, from a single biological sample, inoculates for both ID and AST. The system loads a plate for ID testing as samples are being prepared for AST testing. The system tracks the sample and the inoculates from the samples to link the test results to the sample and the patients from whom the sample was obtained.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: June 28, 2022
    Assignee: BECTON DICKINSON AND COMPANY
    Inventors: Robert Edward Armstrong, John Thulin Page, Ben Turng, Glen Richard Davis, Strett Roger Nicolson, Timothy Hansen
  • Publication number: 20220199606
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Application
    Filed: March 9, 2022
    Publication date: June 23, 2022
    Inventors: John A. ROGERS, Ralph NUZZO, Matthew MEITL, Etienne MENARD, Alfred BACA, Michael MOTALA, Jong-Hyun AHN, Sang-Il PARK, Chang-Jae YU, Heung Cho KO, Mark STOYKOVICH, Jongseung YOON
  • Patent number: 11357824
    Abstract: Nutritive polypeptides are provided herein. Also provided are various other embodiments including nucleic acids encoding the polypeptides, recombinant microorganisms that make the polypeptides, vectors for expressing the polypeptides, methods of making the polypeptides using recombinant microorganisms, compositions and formulations that comprise the polypeptides, and methods of using the polypeptides, compositions and formulations.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: June 14, 2022
    Assignee: Axcella Health Inc.
    Inventors: Michael Hamill, Brett Boghigian, Caitlyn Harvey, David Berry, David Young, Geoffrey Von Maltzahn, John Kramarczyk, Jameson Rogers, Kathryn Heard, Michael Doherty, Nathaniel Silver, Phillip Samayoa, Subhayu Basu, Shaila Rahman, Vimal Vaidya, Ying-Ja Chen
  • Patent number: 11354913
    Abstract: In one embodiment, a method includes, by a computing system associated with a vehicle, receiving sensor data from one or more sensors of the vehicle, wherein the sensor data is based on an environment of the vehicle, identifying, based on the sensor data, one or more objects in the environment, generating, based on the one or more objects, a set of points that represent the environment, wherein each object has one or more corresponding points in the set of points, and each of the points is associated with one or more features associated with the corresponding object, generating a prediction for at least one of the objects in the environment or the vehicle by processing the set of points using a machine-learning model, and causing the vehicle to perform one or more operations based on the prediction.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: June 7, 2022
    Assignee: Woven Planet North America, Inc.
    Inventors: John Rogers Houston, Matthew Swaner Vitelli
  • Publication number: 20220152433
    Abstract: A reusable, protective face mask has two detachable filter trays that attach on each side of the mask, a soft elastomeric face seal, and straps to go around the user's head. Exhalations and inhalations can pass through the same filter material. The filter trays can accept arbitrary filter media. A forward-facing port can be used to increase speech intelligibility by transmitting sound through a diaphragm without a prohibitive amount of distortion. Manufacture of the mask is facilitated because the mask body and the other mask components can be produced by injection molding. Decontamination and sterilization are facilitated because the mask can be fully disassembled.
    Type: Application
    Filed: November 15, 2021
    Publication date: May 19, 2022
    Inventors: Edward G. Winrow, Katherine Anne Barrick, Todd Andrew Barrick, Victor H. Chavez, Lorenzo Jiron, Thomas John Rogers, Eric A. Shaner, Zachary Medaris Wilson, Devyani Lal, John M. Angeli, Mark B. Wehde
  • Publication number: 20220157164
    Abstract: According to one aspect, a method includes identifying, in a scene around a vehicle, at least a first object, wherein the at least first object is identified using data obtained from a sensor system of the vehicle. The method also includes determining a first type associated with the at least first object, identifying at least a first indicator associated with the first type, and providing the at least first indicator associated with the first type to a display arrangement configured to display the scene and the at least first indicator.
    Type: Application
    Filed: October 18, 2021
    Publication date: May 19, 2022
    Applicant: Nuro, Inc.
    Inventors: Emily Anna WESLOSKY, John David WEST, Aleena Pan BYRNE, Eric YI, Yichao (Roger) Shen
  • Patent number: 11333082
    Abstract: A method of controlling an operating temperature of a first combustion zone of a combustor of a rotary machine includes determining a current operating temperature and a target operating temperature of a first combustion zone using a digital simulation. The method further includes determining a derivative of the current operating temperature with respect to a current fuel split using the digital simulation. The fuel split apportions a total flow of fuel to the combustor between the first combustion zone and a second combustion zone. The method also includes calculating a calculated fuel split that results in a calculated operating temperature approaching the target operating temperature. The method further includes channeling a first flow of fuel to the first combustion zone and a second flow of fuel to the second combustion zone.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: May 17, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Jonathan Carl Thatcher, Robert Joseph Loeven, II, John Rogers Huey
  • Patent number: 11322977
    Abstract: A system and method to join distributed energy resources (DER) to achieve common objectives is provided. The present technology organizes and/or aggregates DERs by routing a (DER) program request for resources to DER contributors capable of responding to and performing the request using a routing system. The system accesses a plurality of DER profiles, each profile associated with a DER contributor capable of contributing a resource to the request, and calculates an initial value for each DER profile based on request attributes and scoring metrics associated with the profile. The system then calculates a fitness metric for each DER profile based on the initial value using a neural network having weights based on the plurality of performance indicators and selects the DER profile and contributors to whom to route the request.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: May 3, 2022
    Assignee: DERNetSoft Inc.
    Inventors: Alberto Colombo, John Rogers
  • Publication number: 20220125389
    Abstract: Provided are conformable devices to measure subdermal fluid flow and related methods. A soft, stretchable and flexible substrate supports a thermal actuator and various specially positioned temperature sensors. A microprocessor in electronic communication with sensors calculates subdermal fluid flow from the measured upstream and downstream temperatures, as well as various application-dependent parameters. Devices and methods provided herein are particularly useful for measuring cerebral spinal fluid in a ventricular shunt placed for treatment of hydrocephalus.
    Type: Application
    Filed: January 5, 2022
    Publication date: April 28, 2022
    Inventors: John A. Rogers, Siddharth Krishnan, Tyler R. Ray, Amit B. Ayer, Philipp Gutruf, Jonathan T. Reeder, Kun Hyuck Lee, Chun-Ju Su
  • Publication number: 20220125390
    Abstract: Provided are conformable devices to measure subdermal fluid flow and related methods. A soft, stretchable and flexible substrate supports a thermal actuator and various specially positioned temperature sensors. A microprocessor in electronic communication with sensors calculates subdermal fluid flow from the measured upstream and downstream temperatures, as well as various application-dependent parameters. Devices and methods provided herein are particularly useful for measuring cerebral spinal fluid in a ventricular shunt placed for treatment of hydrocephalus.
    Type: Application
    Filed: January 5, 2022
    Publication date: April 28, 2022
    Inventors: John A. Rogers, Siddharth Krishnan, Tyler R. Ray, Amit B. Ayer, Philipp Gutruf, Jonathan T. Reeder, Kun Hyuck Lee, Chun-Ju Su
  • Publication number: 20220125306
    Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.
    Type: Application
    Filed: January 10, 2022
    Publication date: April 28, 2022
    Inventors: David A. Wallace, Philip Buscemi, Stephen D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
  • Publication number: 20220125305
    Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.
    Type: Application
    Filed: January 10, 2022
    Publication date: April 28, 2022
    Inventors: David A. Wallace, Philip Buscemi, Stephen D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
  • Patent number: 11312550
    Abstract: Packages made from flexible material, wherein the packages include one or more self-folds formed by applying activation energy to the flexible material are presented. The packages include a polymeric film, wherein the polymeric film is formed from one type of polymer, and wherein the flexible material defines an enclosed product volume. The packages include a first panel formed from the flexible material and a second panel formed from the flexible material. The packages include a self-fold that has an overall thickness that is about 5% to about 30% greater than a thickness of the flexible material outside of the self-fold. The self-fold has a differential thermal-mechanical set than the flexible material outside of the self-fold, and forms an angle of about 100 degrees to about 170 degrees between the first panel and the second panel.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: April 26, 2022
    Assignee: The Procter & Gamble Company
    Inventors: Hugh Joseph O'Donnell, Michael Remus, Neil John Rogers
  • Patent number: 11309305
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: April 19, 2022
    Assignees: The Board of Trustees of the University of Illinois, X-Celeprint Limited
    Inventors: John A. Rogers, Ralph Nuzzo, Matthew Meitl, Etienne Menard, Alfred Baca, Michael Motala, Jong-Hyun Ahn, Sang-Il Park, Chang-Jae Yu, Heung Cho Ko, Mark Stoykovich, Jongseung Yoon
  • Publication number: 20220110564
    Abstract: The provided systems, methods and devices describe lightweight, wireless tissue monitoring devices that are capable of establishing conformal contact due to the flexibility or bendability of the device. The described systems and devices are useful, for example, for skin-mounted intraoperative monitoring of nerve-muscle activity. The present systems and methods are versatile and may be used for a variety of tissues (e.g. skin, organs, muscles, nerves, etc.) to measure a variety of different parameters (e.g. electric signals, electric potentials, electromyography, movement, vibration, acoustic signals, response to various stimuli, etc.).
    Type: Application
    Filed: December 21, 2021
    Publication date: April 14, 2022
    Inventors: John A. ROGERS, Michel Kliot, Roozbeh Ghaffari, YuHao Liu
  • Patent number: 11294555
    Abstract: Systems and techniques that provide improvements to designer applications as described to address, for example, limitations associated with constructing a user interface as it is being designed by a user in a development environment. In some implementations, a system provides a design interface through which a user can view, develop, and test functional aspects of an electronic form in real-time while the user is building the application. The system maintains associations between components of the electronic form and expressions for the components referenced in program logic for the electronic form.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: April 5, 2022
    Assignee: Appian Corporation
    Inventors: John Rogers, Charles Tsui, Alison Cowley, Indraja Karnik
  • Publication number: 20220085648
    Abstract: A system and method to join distributed energy resources (DER) to achieve common objectives is provided. The present technology organizes and/or aggregates DERs by routing a (DER) program request for resources to DER contributors capable of responding to and performing the request using a routing system. The system accesses a plurality of DER profiles, each profile associated with a DER contributor capable of contributing a resource to the request, and calculates an initial value for each DER profile based on request attributes and scoring metrics associated with the profile. The system then calculates a fitness metric for each DER profile based on the initial value using a neural network having weights based on the plurality of performance indicators and selects the DER profile and contributors to whom to route the request.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 17, 2022
    Applicant: DERNetSoft Inc.
    Inventors: Alberto Colombo, John Rogers
  • Patent number: 11259754
    Abstract: Provided are conformable devices to measure subdermal fluid flow and related methods. A soft, stretchable and flexible substrate supports a thermal actuator and various specially positioned temperature sensors. A microprocessor in electronic communication with sensors calculates subdermal fluid flow from the measured upstream and downstream temperatures, as well as various application-dependent parameters. Devices and methods provided herein are particularly useful for measuring cerebral spinal fluid in a ventricular shunt placed for treatment of hydrocephalus.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: March 1, 2022
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: John A. Rogers, Siddharth Krishnan, Tyler R. Ray, Amit B. Ayer, Philipp Gutruf, Jonathan T. Reeder, Kun Hyuck Lee, Chun-Ju Su
  • Publication number: 20220047178
    Abstract: An electronic system for monitoring a physical parameter includes an ADM comprising an accumulation mode sensor for measuring the physical parameter by generating electrical energy associated with the physical parameter in response to a surrounding condition, and an energy storing device coupled to the accumulation mode sensor for accumulatively storing the generated electrical energy; a power source; and an SoC coupling with the ADM and the power source, configured such that the stored electrical energy is monitored, and when the stored electrical energy is equal to or greater than a pre-defined threshold, a wake-up event is generated to trigger the SoC to operates in a run mode in which the physical parameter is wirelessly transmitted to a receiver and the stored electrical energy in the energy storing device is discharged, and then the SoC returns to a sleep mode in which a minimal power is consumed.
    Type: Application
    Filed: January 3, 2020
    Publication date: February 17, 2022
    Inventors: John A. Rogers, Shuai Xu, Seung Yun Heo, Kyeongha Kwon, Jong Yoon Lee
  • Patent number: 11246522
    Abstract: The provided systems, methods and devices describe lightweight, wireless tissue monitoring devices that are capable of establishing conformal contact due to the flexibility or bendability of the device. The described systems and devices are useful, for example, for skin-mounted intraoperative monitoring of nerve-muscle activity. The present systems and methods are versatile and may be used for a variety of tissues (e.g. skin, organs, muscles, nerves, etc.) to measure a variety of different parameterps (e.g. electric signals, electric potentials, electromyography, movement, vibration, acoustic signals, response to various stimuli, etc.).
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: February 15, 2022
    Assignees: NORTHWESTERN UNIVERSITY, THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: John A. Rogers, Michel Kliot, Roozbeh Ghaffari, YuHao Liu