Patents by Inventor John A. Smythe, III

John A. Smythe, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120267599
    Abstract: The present disclosure includes a high density resistive random access memory (RRAM) device, as well as methods of fabricating a high density RRAM device. One method of forming an RRAM device includes forming a resistive element having a metal-metal oxide interface. Forming the resistive element includes forming an insulative material over the first electrode, and forming a via in the insulative material. The via is conformally filled with a metal material, and the metal material is planarized to within the via. A portion of the metal material within the via is selectively treated to create a metal-metal oxide interface within the via. A second electrode is formed over the resistive element.
    Type: Application
    Filed: June 14, 2012
    Publication date: October 25, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Joseph N. Greeley, John A. Smythe, III
  • Publication number: 20120001144
    Abstract: The present disclosure includes a high density resistive random access memory (RRAM) device, as well as methods of fabricating a high density RRAM device. One method of forming an RRAM device includes forming a resistive element having a metal-metal oxide interface. Forming the resistive element includes forming an insulative material over the first electrode, and forming a via in the insulative material. The via is conformally filled with a metal material, and the metal material is planarized to within the via. A portion of the metal material within the via is selectively treated to create a metal-metal oxide interface within the via. A second electrode is formed over the resistive element.
    Type: Application
    Filed: July 2, 2010
    Publication date: January 5, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Joseph N. Greeley, John A. Smythe, III
  • Publication number: 20110315543
    Abstract: Forming memory using high power impulse magnetron sputtering is described herein. One or more method embodiments include forming a resistive memory material on a structure using high power impulse magnetron sputtering (HIPIMS), wherein the resistive memory material is formed on the structure in an environment having a temperature of approximately 400 degrees Celsius or less.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 29, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Everett A. McTeer, John A. Smythe, III, Gurtej S. Sandhu
  • Patent number: 7919829
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a silicon nitride barrier is deposited into the trench. The silicon nitride layer has a high nitrogen content near the trench walls to protect the walls. The silicon nitride layer further from the trench walls has a low nitrogen content and a high silicon content, to allow improved adhesion. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator. The resulting trench has a well-adhered insulator which helps the insulating properties of the trench.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: April 5, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Jigish D. Trivedi, Robert D. Patraw, Kevin L. Beaman, John A. Smythe, III
  • Patent number: 7659181
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, an oxygen barrier is deposited into the trench. An expandable, oxidizable liner, preferably amorphous silicon, is then deposited. The trench is then filled with a spin-on dielectric (SOD) material. A densification process is then applied, whereby the SOD material contracts and the oxidizable liner expands. Preferably, the temperature is ramped up while oxidizing during at least part of the densification process. The resulting trench has a negligible vertical wet etch rate gradient and a negligible recess at the top of the trench.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: February 9, 2010
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, III, Jigish D. Trivedi
  • Patent number: 7622769
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, an oxygen barrier is deposited into the trench. An expandable, oxidizable liner, preferably amorphous silicon, is then deposited. The trench is then filled with a spin-on dielectric (SOD) material. A densification process is then applied, whereby the SOD material contracts and the oxidizable liner expands. Preferably, the temperature is ramped up while oxidizing during at least part of the densification process. The resulting trench has a negligible vertical wet etch rate gradient and a negligible recess at the top of the trench.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: November 24, 2009
    Assignee: Micron Technologies, Inc.
    Inventors: John A. Smythe, III, Jigish D. Trivedi
  • Publication number: 20090269569
    Abstract: Semiconductor devices, structures and systems that utilize a polysilazane-based silicon oxide layer or fill, and methods of making the oxide layer are disclosed. In one embodiment, a polysilazane solution is deposited on a substrate and processed with ozone in a wet oxidation at low temperature to chemically modify the polysilazane material to a silicon oxide layer.
    Type: Application
    Filed: July 6, 2009
    Publication date: October 29, 2009
    Inventors: Janos Fucsko, John A. Smythe, III, Li Li, Grady S. Waldo
  • Patent number: 7557420
    Abstract: Semiconductor devices, structures and systems that utilize a polysilazane-based silicon oxide layer or fill, and methods of making the oxide layer are disclosed. In one embodiment, a polysilazane solution is deposited on a substrate and processed with ozone in a wet oxidation at low temperature to chemically modify the polysilazane material to a silicon oxide layer.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: July 7, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Janos Fucsko, John A Smythe, III, Li Li, Grady S Waldo
  • Patent number: 7521378
    Abstract: Semiconductor devices, structures and systems that utilize a polysilazane-based silicon oxide layer or fill, and methods of making the oxide layer are disclosed. In one embodiment, a polysilazane solution is deposited on a substrate and processed with ozone in a wet oxidation at low temperature to chemically modify the polysilazane material to a silicon oxide layer.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: April 21, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Janos Fucsko, John A Smythe, III, Li Li, Grady S Waldo
  • Patent number: 7514366
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a silicon nitride barrier is deposited into the trench. The silicon nitride layer has a high nitrogen content near the trench walls to protect the walls. The silicon nitride layer further from the trench walls has a low nitrogen content and a high silicon content, to allow improved adhesion. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator. The resulting trench has a well-adhered insulator which helps the insulating properties of the trench.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: April 7, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Jigish D. Trivedi, Robert D. Patraw, Kevin L. Beaman, John A. Smythe, III
  • Patent number: 7501691
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a liner layer preferably is deposited into the trench. An anisotropic plasma process is then performed on the trench. A silicon layer may be deposited on the base of the trench during the plasma process, or the plasma can treat the liner layer. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator, and oxidizing the silicon rich layer on the base of the trench. The resulting trench has a consistent etch rate from top to bottom of the trench.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: March 10, 2009
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, III, William Budge
  • Patent number: 7479440
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a liner layer preferably is deposited into the trench. An anisotropic plasma process is then performed on the trench. A silicon layer may be deposited on the base of the trench during the plasma process, or the plasma can treat the liner layer. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator, and oxidizing the silicon rich layer on the base of the trench. The resulting trench has a consistent etch rate from top to bottom of the trench.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: January 20, 2009
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, III, William Budge
  • Patent number: 7271463
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a liner layer preferably is deposited into the trench. An anisotropic plasma process is then performed on the trench. A silicon layer may be deposited on the base of the trench during the plasma process, or the plasma can treat the liner layer. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator, and oxidizing the silicon rich layer on the base of the trench. The resulting trench has a consistent etch rate from top to bottom of the trench.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, III, William Budge
  • Patent number: 7271464
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a silicon nitride barrier is deposited into the trench. The silicon nitride layer has a high nitrogen content near the trench walls to protect the walls. The silicon nitride layer further from the trench walls has a low nitrogen content and a high silicon content, to allow improved adhesion. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator. The resulting trench has a well-adhered insulator which helps the insulating properties of the trench.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Jigish D. Trivedi, Robert D. Patraw, Kevin L. Beaman, John A. Smythe, III
  • Patent number: 7112513
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, an oxygen barrier is deposited into the trench. An expandable, oxidizable liner, preferably amorphous silicon, is then deposited. The trench is then filled with a spin-on dielectric (SOD) material. A densification process is then applied, whereby the SOD material contracts and the oxidizable liner expands. Preferably, the temperature is ramped up while oxidizing during at least part of the densification process. The resulting trench has a negligible vertical wet etch rate gradient and a negligible recess at the top of the trench.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: September 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, III, Jigish D. Trivedi
  • Patent number: 6573141
    Abstract: The present invention provides a method for improving the quality of thin oxides formed upon a semiconductor body. The etch and pre-clean processes are performed in situ, taking place in a single apparatus. This reduces the amount of handling of the wafers, their exposure to clean room air, and time delays between clean and oxidation. This results in both a higher yield and greater reliability. In addition, it reduces equipment requirements. The etch, employing a buffered oxide etchant, resist strip, and pre-clean, all occur in a single apparatus without transfer, yielding better results, despite the inherently dirty nature of the resist strip, than the traditional technique of transferring to a new apparatus for each of these steps. The improvements are particularly important for thin oxides such as the tunnel oxides of EEPROMs.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: June 3, 2003
    Assignee: ZiLOG, Inc.
    Inventors: Bernice L. Kickel, John A. Smythe, III
  • Patent number: 6190973
    Abstract: The present invention provides a method of forming a high quality thin oxide on a semiconductor body. A sacrificial oxide is formed on the semiconductor and then etched to eliminate the surface contamination of the semiconductor body. Then, an EEPROM oxide is formed following by an arsenic implant. Next the EEPROM oxide on the semiconductor body is then prepared by thin oxide growth. The thin oxide is preferably formed in a steam ambient. Subsequently, the oxide is annealed under nitrous oxide ambient using a combination of in-situ and RTP annealing process.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: February 20, 2001
    Assignee: Zilog Inc.
    Inventors: John E. Berg, Bernice L. Kickel, John A. Smythe, III
  • Patent number: 6165846
    Abstract: The improvement of thin tunnel oxides used in EEPROM and FLASH tecnologies using post-oxidation annealing in nitrogen causes defects in subsequent oxide films. These are manifested by oxide thinning at the bird's beak and result in high gate leakage. As the time and temperature to the post-oxidation annealing are increased for improved tunnel oxide performance, the number of defects increases rapidly. A method of realizing the improved tunnel oxide Q.sub.BD using higher post-oxidation time and temperature annealing while at the same time not degrading the quality of subsequent gate oxides is shown. The use of sacrificial oxidation and strip just prior to the transistor gate oxidation is described. This process removes the additional nitride which exists at the field edges, leading to the oxide thinning. As a result, improved tunnel oxide integrity can be achieved without degradation of high and low voltage transistors.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: December 26, 2000
    Assignee: Zilog, Inc.
    Inventors: Timothy K. Carns, John A. Smythe, III, John A. Ransom, Bernice L. Kickel, John E. Berg