Patents by Inventor John Bultitude

John Bultitude has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8885324
    Abstract: An improved overvoltage protection component is provided. The overvoltage protection component has a first internal electrode contained within a dielectric material. The first internal electrode is electrically connected to a first termination and a second internal electrode contained within the ceramic dielectric material is electrically connected to a second termination.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: November 11, 2014
    Assignee: Kemet Electronics Corporation
    Inventors: John Bultitude, Lonnie G. Jones, Jeffrey W. Bell
  • Publication number: 20140230210
    Abstract: New designs for multilayer ceramic capacitors are described with high voltage capability without the need of coating the part to resist surface arc-over. One design combines a high overlap area for higher capacitance whilst retaining a high voltage capability. A variation of this design has increased voltage capability over this design as well as another described in the prior art although overlap area and subsequently capacitance is lowered in this case. These designs are compared to the prior art in examples below.
    Type: Application
    Filed: April 30, 2014
    Publication date: August 21, 2014
    Applicant: Kemet Electronics Corporation
    Inventors: John Bultitude, James R. Magee, Lonnie G. Jones
  • Publication number: 20140232485
    Abstract: A discharge capacitor for use in electronic circuits is described. The discharge capacitor has first internal electrodes in electrical contact with a first external termination and second internal electrodes parallel to and interleaved with the first internal electrodes wherein the second internal electrodes are in electrical contact with a second external termination. A dielectric is between the first internal electrodes and adjacent second internal electrodes. A first discharge gap is between at least one first internal electrode of said first internal electrodes and said second external termination.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: Kemet Electronics Corporation
    Inventors: John Bultitude, Mark R. Laps, Lonnie G. Jones
  • Publication number: 20140198422
    Abstract: An improved electronic component is described. The electronic component has a capacitor with first planer internal electrodes in electrical contact with a first termination and second planer internal electrodes in electrical contact with a second termination. A dielectric is between the first planer electrodes and the second planer internal electrodes. The electronic component further comprises at least one of: an inductor comprising a conductive trace wherein said conductive trace is between the first termination and a third termination; and an overvoltage protection component comprising: a third internal electrode contained within the dielectric and wherein the third internal electrode is electrically connected to the first termination; a fourth internal electrode contained within the ceramic and electrically connected to a fourth termination; and a gap between the third internal electrode and the fourth internal electrode.
    Type: Application
    Filed: May 30, 2013
    Publication date: July 17, 2014
    Inventors: Lonnie G. Jones, John Bultitude, Mark R. Laps, James R. Magee, Jeffrey W. Ball
  • Publication number: 20140177132
    Abstract: An improved method for forming a capacitor is provided as is a capacitor, or electrical component, formed by the method. The method includes providing an aluminum containing anode with an aluminum oxide dielectric thereon; forming a cathode on a first portion of the aluminum oxide dielectric; bonding an anode lead to the aluminum anode on a second portion of the aluminum oxide by a transient liquid phase sintered conductive material thereby metallurgical bonding the aluminum anode to the anode lead; and bonding a cathode lead to said cathode.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: Kemet Electronics Corporation
    Inventors: JOHN E. MCCONNELL, GARRY L. RENNER, JOHN BULTITUDE
  • Publication number: 20140139971
    Abstract: An method of forming a metal foil coated ceramic and a metal foil capacitor is provided in a method of making a metal foil coated ceramic comprising providing a metal foil; applying a ceramic precursor to the metal foil wherein the ceramic precursor comprises at least one susceptor and a high dielectric constant oxide and an organic binder, and sintering the ceramic precursor with a high intensity, high pulse frequency light energy to form the metal foil ceramic.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 22, 2014
    Applicant: Kemet Electronics Corporation
    Inventors: John E. McConnell, John Bultitude, Abhijit Gurav
  • Publication number: 20140002952
    Abstract: A stacked MLCC capacitor is provided wherein the capacitor stack comprises multilayered ceramic capacitors wherein each multilayered ceramic capacitor comprises first electrodes and second electrodes in an alternating stack with a dielectric between each first electrode and each adjacent second electrode. The first electrodes terminate at a first side and the second electrodes second side. A first transient liquid phase sintering conductive layer is the first side and in electrical contact with each first electrode; and a second transient liquid phase sintering conductive layer is on the second side and in electrical contact with each second electrode.
    Type: Application
    Filed: August 6, 2013
    Publication date: January 2, 2014
    Applicant: Kemet Electrinics Corporation
    Inventors: John E. McConnell, Garry L. Renner, John Bultitude, Allen Hill
  • Publication number: 20130314845
    Abstract: A solid electrolytic capacitor is described which comprises an anode, a dielectric on the anode and a cathode on the dielectric. A conductive coating is on the cathode wherein the conductive layer comprises an exterior surface of a first high melting point metal. An adjacent layer is provided comprising a second high melting point metal, wherein the first high melting point metal and the second high melting point metal are metallurgically bonded with a low melting point metal.
    Type: Application
    Filed: August 6, 2013
    Publication date: November 28, 2013
    Applicant: Kemet Electronics Corporation
    Inventors: Antony P. Chacko, John E. McConnell, Robert Ramsbottom, Philip M. Lessner, Randolph S. Hahn, John Bultitude
  • Publication number: 20130284501
    Abstract: An improved discrete electronic device and method of making the improved discrete electronic device is described. The discrete electronic device has an electronic passive component with a termination and a lead frame. A compensating compliant component is between the termination and the lead frame. The compensating compliant component has a composite core and a first conductor on the composite core. The first conductor is in electrical contact with the termination. A second conductor is also on the composite core wherein the second conductor is in electrical contact with the lead frame.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 31, 2013
    Applicant: KEMET Electronics Corporation
    Inventors: John E. McConnell, Alan P. Webster, John Bultitude, Abhijit Gurav
  • Publication number: 20130250473
    Abstract: An improved multi-layered ceramic capacitor, and method of making the multi-layered ceramic capacitor, is described. The capacitor has an active area comprising first layers and second layers in alternating parallel arrangement with dielectric there between. The first layer comprises a first active electrode and a first floating electrode in a common plane and the second layer comprises a second active electrode and a second floating electrode in a second common plane. At least one shield layer is adjacent to an outermost first layer of the first layers wherein the shield layer has a first projection and the first layers have a second projection wherein the first projection and the second projection are different.
    Type: Application
    Filed: March 25, 2013
    Publication date: September 26, 2013
    Inventors: John Bultitude, Lonnie G. Jones, James R. Magee, Kitae Park
  • Publication number: 20130208395
    Abstract: An improved overvoltage protection component is provided. The overvoltage protection component has a first internal electrode contained within a dielectric material. The first internal electrode is electrically connected to a first termination and a second internal electrode contained within the ceramic dielectric material is electrically connected to a second termination.
    Type: Application
    Filed: July 5, 2012
    Publication date: August 15, 2013
    Applicant: KEMET ELECTRONICS CORPORATION
    Inventors: John Bultitude, Lonnie G. Jones, Jeffrey W. Bell
  • Publication number: 20130016488
    Abstract: A stacked leaded array is provided wherein the stacked leaded array allows for increased packing density of electronic components. The stacked leaded array has a multiplicity of electronic components in a stacked array. Each electronic component comprises a first termination and a second termination. A multiplicity of first leads are provided wherein each first lead is in electrical contact with at least one first termination. Second leads are in electrical contact with second terminations.
    Type: Application
    Filed: June 26, 2012
    Publication date: January 17, 2013
    Applicant: KEMET ELECTRONICS CORPORATION
    Inventors: John E. McConnell, John Bultitude, Lonnie Jones, Alan Webster
  • Publication number: 20130010400
    Abstract: An method of forming a metal foil coated ceramic and a metal foil capacitor is provided in a method of making a metal foil coated ceramic comprising providing a metal foil; applying a ceramic precursor to the metal foil wherein the ceramic precursor comprises at least one susceptor and a high dielectric constant oxide and an organic binder, and sintering the ceramic precursor with a high intensity, high pulse frequency light energy to form the metal foil ceramic.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 10, 2013
    Applicant: KEMET ELECTRONICS CORPORATION
    Inventors: John E. McConnell, John Bultitude, Abhijit Gurav
  • Publication number: 20130009727
    Abstract: An improved electronic filter is provided with capacitance and integral inductance properties. The filter has a capacitor with first planer internal electrodes in electrical contact with a first termination and second planer internal electrodes in electrical contact with a second termination. A dielectric is between the first planer internal electrodes and the second planer internal electrodes. A third termination is provided and a conductive trace on a surface of the capacitor is between the third termination and the first termination. A ferromagnetic or ferrimagnetic material is coupled to the conductive trace.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 10, 2013
    Applicant: KEMET ELECTRONICS CORPORATION
    Inventors: John Bultitude, Mark R. Laps, James R. Magee, Lonnie G. Jones
  • Patent number: 8331078
    Abstract: A multi-layered ceramic capacitor with at least one chip and with first base metal plates in a parallel spaced apart relationship and second base metal plates in a parallel spaced apart relationship wherein the first plates and second plates are interleaved. A dielectric is between the first base metal plates and said second base metal plates and the dielectric has a first coefficient of thermal expansion. A first termination is in electrical contact with the first plates and a second termination is in electrical contact with the second plates. Lead frames are attached to, and in electrical contact with, the terminations wherein the lead frames have a second coefficient of thermal expansion and the second coefficient of thermal expansion is higher than said first coefficient of thermal expansion. The lead frame is a non-ferrous material.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: December 11, 2012
    Assignee: Kemet Electronics Corporation
    Inventors: John E. McConnell, Reggie Phillips, Alan P. Webster, John Bultitude, Mark R. Laps, Lonnie G. Jones, Garry Renner
  • Publication number: 20120297596
    Abstract: In a method of manufacturing a multilayer ceramic component, a ceramic capacitor body is formed from electrode layers and dielectric layers. First and second external terminals are attached on opposite ends of the ceramic capacitor body. The ceramic capacitor body is coated to assist in increasing breakdown voltage. The electrode layers include active electrode layers configured in an alternating manner such that a first end of the active electrodes extends from one end of the ceramic capacitor body inwardly and a next internal active electrode extends from an opposite end of the ceramic capacitor body inwardly. The active electrode layer includes side shields to provide additional shielding.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: VISHAY SPRAGUE, INC.
    Inventors: JOHN BULTITUDE, JOHN JIANG, JOHN ROGERS
  • Publication number: 20120300363
    Abstract: A bulk capacitor includes a first electrode formed of a metal foil and a semi-conductive porous ceramic body formed on the metal foil. A dielectric layer is formed on the porous ceramic body for example by oxidation. A conductive medium is deposited on the porous ceramic body filling the pores of the porous ceramic body and forming a second electrode. The capacitor can then be encapsulated with various layers and can include conventional electrical terminations. A method of manufacturing a bulk capacitor includes forming a conductive porous ceramic body on a first electrode formed of a metal foil, oxidizing to form a dielectric layer and filling the porous body with a conductive medium to form a second electrode. A thin semi-conductive ceramic layer can also be disposed between the metal foil and the porous ceramic body.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: Vishay Sprague, Inc.
    Inventors: Reuven Katraro, Nissim Cohen, Marina Kravchik-Volfson, Eli Bershadsky, John Bultitude
  • Publication number: 20120250219
    Abstract: A multilayer ceramic capacitor component includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers, first and second external terminals attached to the ceramic capacitor body. The plurality of electrode layers include a plurality of alternating layers of active electrodes extending inwardly from alternating ends of the ceramic capacitor body. The capacitor may include a plurality of side shields disposed within the plurality of alternating layers of active electrodes to provide shielding with the alternating layers of active electrodes having a pattern to increase overlap area to provide higher capacitance without decreasing separation between the alternative layers of active electrodes. The capacitor may have a voltage breakdown of 3500 volts DC or more in air. The capacitor may have a coating. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.
    Type: Application
    Filed: February 27, 2012
    Publication date: October 4, 2012
    Applicant: Vishay Sprague, Inc.
    Inventors: John Bultitude, John Jiang, John Rogers
  • Patent number: 8264816
    Abstract: A capacitor with a combined with a resistor and/or fuse is described. This safe capacitor can rapidly discharge through the resistor when shorted. The presence of a fuse in series with the capacitor and results in a resistive failure when this opens during and overcurrent condition. Furthermore, the presence of a resistor in parallel to the capacitor allows the energy to be rapidly dissipated when a failure occurs.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: September 11, 2012
    Assignee: Kemet Electronics Corporation
    Inventors: John Bultitude, John E. McConnell
  • Patent number: 8238075
    Abstract: A capacitor includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers and first and second external terminals attached to the ceramic capacitor body. The internal active electrodes within the ceramic capacitor body are configured in an alternating manner. Internal electrode shields within the ceramic capacitor body are used to assist in providing resistance to arc-over. The shields may include a top internal electrode shield and an opposite bottom internal electrode shield wherein the top internal electrode shield and the opposite bottom internal electrode shield are on opposite sides of the plurality of internal active electrodes and each internal electrode shield extends inwardly to or beyond a corresponding external terminal to thereby provide shielding. Side shields are used. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: August 7, 2012
    Assignee: Vishay Sprague, Inc.
    Inventors: John Bultitude, John Jiang, John Rogers