Patents by Inventor John Bultitude

John Bultitude has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8238076
    Abstract: A bulk capacitor includes a first electrode formed of a metal foil and a semi-conductive porous ceramic body formed on the metal foil. A dielectric layer is formed on the porous ceramic body for example by oxidation. A conductive medium is deposited on the porous ceramic body filling the pores of the porous ceramic body and forming a second electrode. The capacitor can then be encapsulated with various layers and can include conventional electrical terminations. A method of manufacturing a bulk capacitor includes forming a conductive porous ceramic body on a first electrode formed of a metal foil, oxidizing to form a dielectric layer and filling the porous body with a conductive medium to form a second electrode. A thin semi-conductive ceramic layer can also be disposed between the metal foil and the porous ceramic body.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: August 7, 2012
    Assignee: Vishay Sprague, Inc.
    Inventors: Reuven Katraro, Nissim Cohen, Marina Kravchik-Volfson, Eli Bershadsky, John Bultitude
  • Publication number: 20120079693
    Abstract: A capacitor with a combined with a resistor and/or fuse is described. This safe capacitor can rapidly discharge through the resistor when shorted. The presence of a fuse in series with the capacitor and results in a resistive failure when this opens during and overcurrent condition. Furthermore, the presence of a resistor in parallel to the capacitor allows the energy to be rapidly dissipated when a failure occurs.
    Type: Application
    Filed: December 8, 2011
    Publication date: April 5, 2012
    Applicant: Kemet Electronics Corporation
    Inventors: John Bultitude, John E. McConnell
  • Patent number: 8125762
    Abstract: A multilayer ceramic capacitor component includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers, first and second external terminals attached to the ceramic capacitor body. The plurality of electrode layers include a plurality of alternating layers of active electrodes extending inwardly from alternating ends of the ceramic capacitor body. The capacitor may include a plurality of side shields disposed within the plurality of alternating layers of active electrodes to provide shielding with the alternating layers of active electrodes having a pattern to increase overlap area to provide higher capacitance without decreasing separation between the alternative layers of active electrodes. The capacitor may have a voltage breakdown of 3500 volts DC or more in air. The capacitor may have a coating. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: February 28, 2012
    Assignee: Vishay Sprague, Inc.
    Inventors: John Bultitude, John Jiang, John Rogers
  • Publication number: 20110292567
    Abstract: A capacitor has first planer internal electrodes in electrical contact with a first external termination. Second planer internal electrodes are interleaved with the first planer internal electrodes wherein the second planer internal electrodes are in electrical contact with a second external termination. A dielectric is between the first planer internal electrodes and the second planer internal electrodes and at least one of the external terminations comprises a material selected from a polymer solder and a transient liquid phase sintering adhesive.
    Type: Application
    Filed: May 24, 2011
    Publication date: December 1, 2011
    Applicant: Kemet Electronics Corporation
    Inventors: John E. McConnell, John Bultitude, Reggie Phillips, Robert Allen Hill, Garry L. Renner, Philip M. Lessner, Antony P. Chacko, Jeffrey Bell, Keith Brown
  • Publication number: 20110292572
    Abstract: A solid electrolytic capacitor with an anode and a dielectric on the anode. A cathode is on the dielectric and a conductive coating on said dielectric. A cathode lead is electrically connected to the conductive coating by an adhesive selected from the group consisting of a transient liquid phase sinterable material and polymer solder.
    Type: Application
    Filed: May 24, 2011
    Publication date: December 1, 2011
    Applicant: Kemet Electronics Corporation
    Inventors: Antony P. Chacko, John E. McConnell, Philip M. Lessner, Randolph S. Hahn, John Bultitude
  • Patent number: 8028397
    Abstract: The present invention uses a frame with one or more axial ribs extending from a spine onto which two or more discrete two-terminal electronic components, such as capacitors, resistors, or inductors, can be attached. The function of the frame is to align and space the electronic components in a single device or array that allows the two-terminals of each component to be separately contacted or soldered to a PC board during final assembly into a circuit. The frame may use friction or a bonding agent to hold the components to the frame. Additionally, the base of the frame forms a single surface for the pick and place equipment used in circuit board assembly. The frame and any bonding agent must be capable of sustaining high temperature soldering operations to form electrical contacts in the circuit assembly operation.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: October 4, 2011
    Assignee: Vishay Sprague, Inc.
    Inventor: John Bultitude
  • Publication number: 20110043963
    Abstract: A capacitor with a combined with a resistor and/or fuse is described. This safe capacitor can rapidly discharge through the resistor when shorted. The presence of a fuse in series with the capacitor and results in a resistive failure when this opens during and overcurrent condition. Furthermore, the presence of a resistor in parallel to the capacitor allows the energy to be rapidly dissipated when a failure occurs.
    Type: Application
    Filed: August 24, 2009
    Publication date: February 24, 2011
    Inventors: John Bultitude, John E. McConnell
  • Publication number: 20110002082
    Abstract: New designs for multilayer ceramic capacitors are described with high voltage capability without the need of coating the part to resist surface arc-over. One design combines a high overlap area for higher capacitance whilst retaining a high voltage capability. A variation of this design has increased voltage capability over this design as well as another described in the prior art although overlap area and subsequently capacitance is lowered in this case. These designs are compared to the prior art in examples below.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Applicant: Kemet Electronics Corporation
    Inventors: John Bultitude, James R. Magee, Lonnie G. Jones
  • Publication number: 20100243307
    Abstract: A multi-layered ceramic capacitor with at least one chip and with first base metal plates in a parallel spaced apart relationship and second base metal plates in a parallel spaced apart relationship wherein the first plates and second plates are interleaved. A dielectric is between the first base metal plates and said second base metal plates and the dielectric has a first coefficient of thermal expansion. A first termination is in electrical contact with the first plates and a second termination is in electrical contact with the second plates. Lead frames are attached to, and in electrical contact with, the terminations wherein the lead frames have a second coefficient of thermal expansion and the second coefficient of thermal expansion is higher than said first coefficient of thermal expansion. The lead frame is a non-ferrous material.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 30, 2010
    Inventors: John E. McConnell, Reggie Phillips, Alan P. Webster, John Bultitude, Mark R. Laps, Lonnie G. Jones, Garry Renner
  • Patent number: 7715173
    Abstract: A capacitor includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers and first and second external terminals attached to the ceramic capacitor body. The internal active electrodes within the ceramic capacitor body are configured in an alternating manner. Internal electrode shields within the ceramic capacitor body are used to assist in providing resistance to arc-over. The shields can include a top internal electrode shield and an opposite bottom internal electrode shield wherein the top internal electrode shield and the opposite bottom internal electrode shield are on opposite sides of the plurality of internal active electrodes and each internal electrode shield extends inwardly to or beyond a corresponding external terminal to thereby provide shielding. Side shields are used. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: May 11, 2010
    Assignee: Vishay Sprague, Inc.
    Inventors: John Bultitude, John Jiang, John Rogers
  • Publication number: 20100073846
    Abstract: A bulk capacitor includes a first electrode formed of a metal foil and a semi-conductive porous ceramic body formed on the metal foil. A dielectric layer is formed on the porous ceramic body for example by oxidation. A conductive medium is deposited on the porous ceramic body filling the pores of the porous ceramic body and forming a second electrode. The capacitor can then be encapsulated with various layers and can include conventional electrical terminations. A method of manufacturing a bulk capacitor includes forming a conductive porous ceramic body on a first electrode formed of a metal foil, oxidizing to form a dielectric layer and filling the porous body with a conductive medium to form a second electrode. A thin semi-conductive ceramic layer can also be disposed between the metal foil and the porous ceramic body.
    Type: Application
    Filed: September 3, 2009
    Publication date: March 25, 2010
    Applicant: VISHAY SPRAGUE, INC.
    Inventors: Reuven Katraro, Nissim Cohen, Marina Kravchik-Volfson, Eli Bershadsky, John Bultitude
  • Publication number: 20100033894
    Abstract: A multilayer ceramic capacitor component includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers, first and second external terminals attached to the ceramic capacitor body. The plurality of electrode layers include a plurality of alternating layers of active electrodes extending inwardly from alternating ends of the ceramic capacitor body. The capacitor may include a plurality of side shields disposed within the plurality of alternating layers of active electrodes to provide shielding with the alternating layers of active electrodes having a pattern to increase overlap area to provide higher capacitance without decreasing separation between the alternative layers of active electrodes. The capacitor may have a voltage breakdown of 3500 volts DC or more in air. The capacitor may have a coating. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.
    Type: Application
    Filed: August 11, 2008
    Publication date: February 11, 2010
    Applicant: VISHAY SPRAGUE, INC.
    Inventors: JOHN BULTITUDE, JOHN JIANG, JOHN ROGERS
  • Publication number: 20090052111
    Abstract: A capacitor includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers and first and second external terminals attached to the ceramic capacitor body. The internal active electrodes within the ceramic capacitor body are configured in an alternating manner. Internal electrode shields within the ceramic capacitor body are used to assist in providing resistance to arc-over. The shields may include a top internal electrode shield and an opposite bottom internal electrode shield wherein the top internal electrode shield and the opposite bottom internal electrode shield are on opposite sides of the plurality of internal active electrodes and each internal electrode shield extends inwardly to or beyond a corresponding external terminal to thereby provide shielding. Side shields are used. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.
    Type: Application
    Filed: August 11, 2008
    Publication date: February 26, 2009
    Applicant: VISHAY SPRAGUE, INC.
    Inventors: JOHN BULTITUDE, JOHN JIANG, JOHN ROGERS
  • Publication number: 20090052112
    Abstract: A capacitor includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers and first and second external terminals attached to the ceramic capacitor body. The internal active electrodes within the ceramic capacitor body are configured in an alternating manner. Internal electrode shields within the ceramic capacitor body are used to assist in providing resistance to arc-over. The shields can include a top internal electrode shield and an opposite bottom internal electrode shield wherein the top internal electrode shield and the opposite bottom internal electrode shield are on opposite sides of the plurality of internal active electrodes and each internal electrode shield extends inwardly to or beyond a corresponding external terminal to thereby provide shielding. Side shields are used. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.
    Type: Application
    Filed: August 11, 2008
    Publication date: February 26, 2009
    Applicant: VISHAY SPRAGUE, INC.
    Inventors: JOHN BULTITUDE, JOHN JIANG, JOHN ROGERS
  • Publication number: 20080189931
    Abstract: The present invention uses a frame with one or more axial ribs extending from a spine onto which two or more discrete two-terminal electronic components, such as capacitors, resistors, or inductors, can be attached. The function of the frame is to align and space the electronic components in a single device or array that allows the two-terminals of each component to be separately contacted or soldered to a PC board during final assembly into a circuit. The frame may use friction or a bonding agent to hold the components to the frame. Additionally, the base of the frame forms a single surface for the pick and place equipment used in circuit board assembly. The frame and any bonding agent must be capable of sustaining high temperature soldering operations to form electrical contacts in the circuit assembly operation.
    Type: Application
    Filed: April 22, 2008
    Publication date: August 14, 2008
    Applicant: VISHAY VITRAMON INC.
    Inventor: JOHN BULTITUDE
  • Patent number: 7336475
    Abstract: A capacitor includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers and first and second external terminals attached to the ceramic capacitor body. The internal active electrodes within the ceramic capacitor body are configured in an alternating manner. Internal electrode shields within the ceramic capacitor body are used to assist in providing resistance to arc-over. The shields can include a top internal electrode shield and an opposite bottom internal electrode shield wherein the top internal electrode shield and the opposite bottom internal electrode shield are on opposite sides of the plurality of internal active electrodes and each internal electrode shield extends inwardly to or beyond a corresponding external terminal to thereby provide shielding. Side shields are used. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: February 26, 2008
    Assignee: Vishay Vitramon, Inc.
    Inventors: John Bultitude, John Jiang, John Rogers
  • Publication number: 20070195484
    Abstract: A capacitor includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers and first and second external terminals attached to the ceramic capacitor body. The internal active electrodes within the ceramic capacitor body are configured in an alternating manner. Internal electrode shields within the ceramic capacitor body are used to assist in providing resistance to arc-over. The shields can include a top internal electrode shield and an opposite bottom internal electrode shield wherein the top internal electrode shield and the opposite bottom internal electrode shield are on opposite sides of the plurality of internal active electrodes and each internal electrode shield extends inwardly to or beyond a corresponding external terminal to thereby provide shielding. Side shields are used. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.
    Type: Application
    Filed: February 22, 2006
    Publication date: August 23, 2007
    Applicant: Vishay Vitramon Inc.
    Inventors: John Bultitude, John Jiang, John Rogers
  • Publication number: 20070096345
    Abstract: The present invention uses a frame with one or more axial ribs extending from a spine onto which two or more discrete two-terminal electronic components, such as capacitors, resistors, or inductors, can be attached. The function of the frame is to align and space the electronic components in a single device or array that allows the two-terminals of each component to be separately contacted or soldered to a PC board during final assembly into a circuit. The frame may use friction or a bonding agent to hold the components to the frame. Additionally, the base of the frame forms a single surface for the pick and place equipment used in circuit board assembly. The frame and any bonding agent must be capable of sustaining high temperature soldering operations to form electrical contacts in the circuit assembly operation.
    Type: Application
    Filed: December 7, 2005
    Publication date: May 3, 2007
    Applicant: Vishay Vitramon Inc.
    Inventor: John Bultitude
  • Patent number: 5858901
    Abstract: Barium titanate temperature stable dielectric compositions are disclosed containing magnesium oxide, silicon dioxide, germanium oxide and optionally an oxide or carbonate of barium, calcium or strontium which can be used to produce multilayer ceramic capacitors with nickel or nickel alloy electrode that have a variation of capacitance with temperature of less than .+-.10% over the range -55.degree. C. to +125.degree. C. compared with the value of the capacitance at 25.degree. C., or to produce multilayer ceramic capacitors with noble metal inner electrodes that have a variation of capacitance with temperature of less than .+-.15% over the range 55.degree. to +125.degree. C. compared with the value at 25.degree. C., and which does not contain any second phases after sintering.
    Type: Grant
    Filed: February 21, 1996
    Date of Patent: January 12, 1999
    Assignee: Cookson Group plc
    Inventors: Mike Ssu Hai Chu, John Bultitude, Christopher Hood, Kay Louise Nimmo, Michael Rand
  • Patent number: 5646080
    Abstract: A sinterable dielectric ceramic powder composition comprising 95 to 98 parts by weight of a major ingredient consisting of 97.0 to 99.5 mole % barium titanate, 0.5 to 3.0 mole % magnesium oxide or a precursor therefor and 0 to 2.0 mole % manganese oxide or a precursor therefor and 0 to 0.2 mole % cobalt oxide or a precursor therefor; 2 to 5 parts by weight of a minor ingredient consisting of a ternary mixture of 15 to 30 mole % barium oxide or a precursor therefor, 15 to 30 mole % silicon dioxide or a precursor therefor and 40 to 70 mole % calcium titanate, which composition can be fabricated into multilayer ceramic capacitors with nickel, nickel alloy, palladium or palladium/silver alloy inner electrodes, the so formed capacitors having a variation of capacitance with temperature of less than .+-.20% over the range -55.degree. C. to 140.degree. C. as compared to the value at 25.degree. C. and not containing any second phases after sintering.
    Type: Grant
    Filed: November 20, 1995
    Date of Patent: July 8, 1997
    Assignee: Tam Ceramics, Inc.
    Inventors: Mike Ssu-Hai Chu, John Bultitude, Michael Rand, Kay Louise Nimmo, Ian Thompson, Christopher Hood