Patents by Inventor John E. Bowers

John E. Bowers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150177458
    Abstract: A method of fabricating a heterogeneous semiconductor wafer includes depositing a III-V type semiconductor epitaxial layer on a first wafer having a semiconductor substrate. The first wafer is then bonded to a second wafer having a patterned silicon layer formed on a semiconductor substrate, wherein the III-V type semiconductor epitaxial layer is bonded to the patterned silicon layer of the second wafer. The semiconductor substrate associated with the first wafer is removed to expose the III-V type semiconductor epitaxial layer.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 25, 2015
    Inventors: John E. BOWERS, Jock BOVINGTON
  • Patent number: 9020002
    Abstract: Photonic integrated circuits on silicon are disclosed. By bonding a wafer of compound semiconductor material as an active region to silicon and removing the substrate, the lasers, amplifiers, modulators, and other devices can be processed using standard photolithographic techniques on the silicon substrate. A silicon laser intermixed integrated device in accordance with one or more embodiments of the present invention comprises a silicon-on-insulator substrate, comprising at least one waveguide in a top surface, and a compound semiconductor substrate comprising a gain layer, the compound semiconductor substrate being subjected to a quantum well intermixing process, wherein the upper surface of the compound semiconductor substrate is bonded to the top surface of the silicon-on-insulator substrate.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: April 28, 2015
    Assignee: The Regents of the University of California
    Inventors: Matthew N. Sysak, John E. Bowers, Alexander W. Fang, Hyundai Park
  • Patent number: 8994004
    Abstract: Photodetectors and integrated circuits including photodetectors are disclosed. A photodetector in accordance with the present invention comprises a silicon-on-insulator (SOI) structure resident on a first substrate, the SOI structure comprising a passive waveguide, and a III-V structure bonded to the SOI structure, the III-V structure comprising a quantum well region, a hybrid waveguide, coupled to the quantum well region and the SOI structure adjacent to the passive waveguide, and a mesa, coupled to the quantum well region, wherein when light passes through the hybrid waveguide, the quantum well region detects the light and generates current based on the light detected.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 31, 2015
    Assignee: The Regent of the University of California
    Inventor: John E. Bowers
  • Publication number: 20150055911
    Abstract: Photonic integrated circuits on silicon are disclosed. By bonding a wafer of HI-V material as an active region to silicon and removing the substrate, the lasers, amplifiers, modulators, and other devices can be processed using standard photolithographic techniques on the silicon substrate. The coupling between the silicon waveguide and the III-V gain region allows for integration of low threshold lasers, tunable lasers, and other photonic integrated circuits with Complimentary Metal Oxide Semiconductor (CMOS) integrated circuits.
    Type: Application
    Filed: September 30, 2014
    Publication date: February 26, 2015
    Inventor: John E. Bowers
  • Publication number: 20140318592
    Abstract: A method for enhancement of thermoelectric properties through polarization engineering. Internal electric fields created within a material are used to spatially confine electrons for the purpose of enhancing thermoelectric properties. Electric fields can be induced within a material by the presence of bound charges at interfaces. A combination of spontaneous and piezoelectric polarization can induce this interfacial charge. The fields created by these bound charges have the effect of confining charge carriers near these interfaces. By confining charge carriers to a channel where scattering centers can be deliberately excluded the electron mobility can be enhanced, thus enhancing thermoelectric power factor. Simultaneously, phonons will not be affected by the fields and thus will be subject to the many scattering centers present in the majority of the structure. This allows for simultaneous enhancement of power factor and reduction of thermal conductivity, thus improving the thermoelectric figure of merit, ZT.
    Type: Application
    Filed: December 14, 2012
    Publication date: October 30, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Alexander Sztein, John E. Bowers, Steven P. DenBaars
  • Patent number: 8767792
    Abstract: Embodiments of a method comprising guiding an optical mode with an optical waveguide disposed in silicon, overlapping both the optical waveguide and an active semiconductor material evanescently coupled to the optical waveguide with the optical mode guided through the optical waveguide, electrically pumping the active semiconductor material to inject current directed through the active semiconductor material and through the optical mode, and generating light in the active semiconductor material in response to the injected current. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 1, 2014
    Assignee: Intel Corporation
    Inventors: John E. Bowers, Oded Cohen, Alexander W. Fang, Richard Jones, Mario J. Paniccia, Hyundai Park
  • Patent number: 8693509
    Abstract: Loss modulated silicon evanescent lasers are disclosed. A loss-modulated semiconductor laser device in accordance with one or more embodiments of the present invention comprises a semiconductor-on-insulator (SOI) structure resident on a first substrate, the SOI structure comprising a waveguide in a semiconductor layer of the SOI structure, and a semiconductor structure bonded to the semiconductor layer of the SOI structure, wherein at least one region in the semiconductor layer of the SOI structure controls a photon lifetime in the semiconductor laser device.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: April 8, 2014
    Assignee: The Regents of the University of California
    Inventors: John E. Bowers, Daoxin Dai
  • Publication number: 20140010253
    Abstract: Photonic integrated circuits on silicon are disclosed. By bonding a wafer of compound semiconductor material as an active region to silicon and removing the substrate, the lasers, amplifiers, modulators, and other devices can be processed using standard photolithographic techniques on the silicon substrate. A silicon laser intermixed integrated device in accordance with one or more embodiments of the present invention comprises a silicon-on-insulator substrate, comprising at least one waveguide in a top surface, and a compound semiconductor substrate comprising a gain layer, the compound semiconductor substrate being subjected to a quantum well intermixing process, wherein the upper surface of the compound semiconductor substrate is bonded to the top surface of the silicon-on-insulator substrate.
    Type: Application
    Filed: September 13, 2013
    Publication date: January 9, 2014
    Applicant: The Regents of the University of California
    Inventors: Matthew N. Sysak, John E. Bowers, Alexander W. Fang, Hyundai Park
  • Patent number: 8559478
    Abstract: Photonic integrated circuits on silicon are disclosed. By bonding a wafer of compound semiconductor material as an active region to silicon and removing the substrate, the lasers, amplifiers, modulators, and other devices can be processed using standard photolithographic techniques on the silicon substrate. A silicon laser intermixed integrated device in accordance with one or more embodiments of the present invention comprises a silicon-on-insulator substrate, comprising at least one waveguide in a top surface, and a compound semiconductor substrate comprising a gain layer, the compound semiconductor substrate being subjected to a quantum well intermixing process, wherein the upper surface of the compound semiconductor substrate is bonded to the top surface of the silicon-on-insulator substrate.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: October 15, 2013
    Assignee: The Regents of the University of California
    Inventors: Matthew N. Sysak, John E. Bowers, Alexander W. Fang, Hyundai Park
  • Publication number: 20130195137
    Abstract: Embodiments of a method comprising guiding an optical mode with an optical waveguide disposed in silicon, overlapping both the optical waveguide and an active semiconductor material evanescently coupled to the optical waveguide with the optical mode guided through the optical waveguide, electrically pumping the active semiconductor material to inject current directed through the active semiconductor material and through the optical mode, and generating light in the active semiconductor material in response to the injected current. Other embodiments are disclosed and claimed.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 1, 2013
    Inventors: John E. Bowers, Oded Cohen, Alexander W. Fang, Richard Jones, Mario J. Paniccia, Hyundai Park
  • Patent number: 8396337
    Abstract: By introducing magneto-optical garnets with high Faraday rotation and low optical loss in a ring resonator, a nonreciprocal phase shift is generated to split the resonance wavelengths of clockwise and counter-clockwise modes under magnetic field. There are three main applications based on this nonreciprocal effect, optical isolators, optical circulators, and tunable optical filters. The concept of the tunable filters and the design of optical isolators for TE and TM modes are described in the paper. With proper optical ring isolator configurations, optical circulators can be realized.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: March 12, 2013
    Assignee: The Regents of the University of California
    Inventors: Herbert Kroemer, John E. Bowers, Ming-Chun Tien
  • Publication number: 20130020556
    Abstract: Photodetectors and integrated circuits including photodetectors are disclosed. A photodetector in accordance with the present invention comprises a silicon-on-insulator (SOI) structure resident on a first substrate, the SOI structure comprising a passive waveguide, and a III-V structure bonded to the SOI structure, the III-V structure comprising a quantum well region, a hybrid waveguide, coupled to the quantum well region and the SOI structure adjacent to the passive waveguide, and a mesa, coupled to the quantum well region, wherein when light passes through the hybrid waveguide, the quantum well region detects the light and generates current based on the light detected.
    Type: Application
    Filed: January 27, 2012
    Publication date: January 24, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: John E. Bowers
  • Patent number: 8324659
    Abstract: Embodiments of detectors made using lattice matched photoabsorbing layers are disclosed. A photodiode apparatus in accordance with one or more embodiments of the present invention comprises an indium phosphide substrate, and a photoabsorbing region comprising at least an indium gallium arsenide antimonide nitride (InGaAsSbN) layer, wherein the InGaAsSbN layer has a thickness of at least 100 nanometers and is nominally lattice-matched to the indium phosphide substrate.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: December 4, 2012
    Assignee: Aerius Photonics LLC
    Inventors: Michael MacDougal, Jonathan Geske, John E. Bowers
  • Publication number: 20120199932
    Abstract: Quantum avalanche photodiodes are disclosed. An avalanche photodiode in accordance with one or more embodiments of the present invention comprises an absorption region having a first dopant type, a collection region, having a second dopant type, and a multiplication region, coupled between the absorption region and the collection region, wherein a distance of the multiplication region between the absorption region and the collection region is a plurality of avalanche lengths.
    Type: Application
    Filed: October 7, 2010
    Publication date: August 9, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: John E. Bowers
  • Patent number: 8110823
    Abstract: Photonic integrated circuits on silicon are disclosed. By bonding a wafer of III-V material as an active region to silicon and removing the substrate, the lasers, amplifiers, modulators, and other devices can be processed using standard photolithographic techniques on the silicon substrate. The coupling between the silicon waveguide and the III-V gain region allows for integration of low threshold lasers, tunable lasers, and other photonic integrated circuits with Complimentary Metal Oxide Semiconductor (CMOS) integrated circuits.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: February 7, 2012
    Assignee: The Regents of the University of California
    Inventor: John E. Bowers
  • Patent number: 8106379
    Abstract: Photodetectors and integrated circuits including photodetectors are disclosed. A photodetector in accordance with the present invention comprises a silicon-on-insulator (SOI) structure resident on a first substrate, the SOI structure comprising a passive waveguide, and a III-V structure bonded to the SOI structure, the III-V structure comprising a quantum well region, a hybrid waveguide, coupled to the quantum well region and the SOI structure adjacent to the passive waveguide, and a mesa, coupled to the quantum well region, wherein when light passes through the hybrid waveguide, the quantum well region detects the light and generates current based on the light detected.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: January 31, 2012
    Assignee: The Regents of the University of California
    Inventor: John E. Bowers
  • Publication number: 20120002694
    Abstract: Loss modulated silicon evanescent lasers are disclosed. A loss-modulated semiconductor laser device in accordance with one or more embodiments of the present invention comprises a semiconductor-on-insulator (SOI) structure resident on a first substrate, the SOI structure comprising a waveguide in a semiconductor layer of the SOI structure, and a semiconductor structure bonded to the semiconductor layer of the SOI structure, wherein at least one region in the semiconductor layer of the SOI structure controls a photon lifetime in the semiconductor laser device.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: John E. Bowers, Daoxin Dai
  • Publication number: 20120002914
    Abstract: By introducing magneto-optical garnets with high Faraday rotation and low optical loss in a ring resonator, a nonreciprocal phase shift is generated to split the resonance wavelengths of clockwise and counter-clockwise modes under magnetic field. There are three main applications based on this nonreciprocal effect, optical isolators, optical circulators, and tunable optical filters. The concept of the tunable filters and the design of optical isolators for TE and TM modes are described in the paper. With proper optical ring isolator configurations, optical circulators can be realized.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Herbert Kroemer, John E. Bowers, Ming-Chun Tien
  • Publication number: 20110169048
    Abstract: Embodiments of detectors made using lattice matched photoabsorbing layers are disclosed. A photodiode apparatus in accordance with one or more embodiments of the present invention comprises an indium phosphide substrate, and a photoabsorbing region comprising at least an indium gallium arsenide antimonide nitride (InGaAsSbN) layer, wherein the InGaAsSbN layer has a thickness of at least 100 nanometers and is nominally lattice-matched to the indium phosphide substrate.
    Type: Application
    Filed: March 24, 2011
    Publication date: July 14, 2011
    Applicant: AERIUS PHOTONICS LLC
    Inventors: Michael MacDougal, Jonathan Geske, John E. Bowers
  • Patent number: 7915639
    Abstract: Embodiments of detectors made using lattice matched photoabsorbing layers are disclosed. A photodiode apparatus in accordance with one or more embodiments of the present invention comprises an indium phosphide substrate, and a photoabsorbing region comprising at least an indium gallium arsenide antimonide nitride (InGaAsSbN) layer, wherein the InGaAsSbN layer has a thickness of at least 100 nanometers and is nominally lattice-matched to the indium phosphide substrate.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: March 29, 2011
    Assignee: Aerius Photonics LLC
    Inventors: Michael MacDougal, Jonathan Geske, John E. Bowers