Patents by Inventor John H. Stevens

John H. Stevens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8220566
    Abstract: Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of at least partially carburized monotungsten carbide and ditungsten carbide eutectic particles dispersed throughout a matrix material. In some embodiments, the particles are at least substantially fully carburized monotungsten carbide and ditungsten carbide eutectic particles. In further embodiments, the particles are generally spherical or at least substantially spherical. Methods of forming such particles include exposing a plurality of monotungsten carbide and ditungsten carbide eutectic particles to a gas containing carbon. Methods of manufacturing such tools include providing a plurality of at least partially carburized monotungsten carbide and ditungsten carbide eutectic particles or at least substantially completely carburized monotungsten carbide and ditungsten carbide eutectic particles within a matrix material.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: July 17, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Jimmy W. Eason, John H. Stevens, James L. Overstreet
  • Patent number: 8201610
    Abstract: Methods, systems and compositions for manufacturing downhole tools and downhole tool parts for drilling subterranean material are disclosed. A model having an external peripheral shape of a downhole tool or tool part is fabricated. Mold material is applied to an external periphery of the model. The mold material is permitted to harden to form a mold about the model. The model is eliminated and a composite matrix material is cast within the mold to form a finished downhole tool or tool part.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: June 19, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: John H. Stevens, Jimmy W. Eason
  • Patent number: 8176812
    Abstract: Methods for forming bodies of earth-boring drill bits and other tools include milling a plurality of hard particles and a plurality of particles comprising a matrix material to form a mill product comprising powder particles, separating the particles into a plurality of particle size fractions. Some of the particles from the fractions may be combined to form a powder mixture, which may be pressed to form a green body. Additional methods include mixing a plurality of hard particles and a plurality of particles comprising a matrix material to form a powder mixture, and pressing the powder mixture with pressure having an oscillating magnitude to form a green body. In yet additional methods a powder mixture may be pressed within a deformable container to form a green body and drainage of liquid from the container is enabled as the powder mixture is pressed.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: May 15, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens
  • Publication number: 20120097456
    Abstract: The present invention relates to compositions for forming at least a portion of an earth-boring rotary drill bit. The rotary drill bit may comprise a cemented transition metal carbide composition containing at least one precipitate transition metal carbide phase and at least one binder phase. The binder phase may comprise an alloy of at least one of cobalt, iron, and nickel having a melting point less than 1350° C.
    Type: Application
    Filed: December 1, 2011
    Publication date: April 26, 2012
    Applicants: Baker Hughes Incorporated, TDY INDUSTRIES, INC.
    Inventors: Prakash K. Mirchandani, Jimmy W. Eason, James J. Oakes, James C. Westhoff, Gabriel B. Collins, John H. Stevens, Steven G. Caldwell, Alfred J. Mosco
  • Patent number: 8087324
    Abstract: The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one of carbide, nitride, boride, oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: January 3, 2012
    Assignees: TDY Industries, Inc., Baker Hughes Incorporated
    Inventors: Jimmy W. Eason, Prakash K. Mirchandani, James J. Oakes, James C. Westhoff, Gabriel B. Collins, John H. Stevens, Steven G. Caldwell, Alfred J. Mosco
  • Patent number: 8079429
    Abstract: Geometric compensation techniques are used to improve the accuracy by which features may be located on drill bits formed using particle compaction and sintering processes. In some embodiments, a positional error to be exhibited by at least one feature in a less than fully sintered bit body upon fully sintering the bit body is predicted and the at least one feature is formed on the less than fully sintered bit body at a location at least partially determined by the predicted positional error. In other embodiments, bit bodies of earth-boring rotary drill bits are designed to include a design drilling profile and a less than fully sintered bit body is formed including a drilling profile having a shape differing from a shape of the design drilling profile. Less than fully sintered bit bodies of earth-boring rotary drill bits are formed using such methods.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: December 20, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Oliver Matthews, III
  • Patent number: 8074750
    Abstract: Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of silicon carbide particles dispersed throughout a matrix material, such as, for example, an aluminum or aluminum-based alloy. In some embodiments, the silicon carbide particles comprise an ABC-SiC material. Methods of manufacturing such tools include providing a plurality of silicon carbide particles within a matrix material. Optionally, the silicon carbide particles may comprise ABC-SiC material, and the ABC-SiC material may be toughened to increase a fracture toughness exhibited by the ABC-SiC material. In some methods, at least one of an infiltration process and a powder compaction and consolidation process may be employed.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: December 13, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Heeman Choe, John H. Stevens, James L. Overstreet, Jimmy W. Eason, James C. Westhoff
  • Publication number: 20110287924
    Abstract: Methods of forming at least a portion of an earth-boring tool include providing particulate matter comprising a hard material in a mold cavity, melting a metal and the hard material to form a molten composition comprising a eutectic or near-eutectic composition of the metal and the hard material, casting the molten composition to form the at least a portion of an earth-boring tool within the mold cavity, and providing an inoculant within the mold cavity. Methods of forming a roller cone of an earth-boring rotary drill bit comprise forming a molten composition, casting the molten composition within a mold cavity, solidifying the molten composition to form the roller cone, and controlling grain growth using an inoculant as the molten composition solidifies. Articles comprising components of earth-boring tools are fabricated using such methods.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 24, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: John H. Stevens
  • Publication number: 20110287238
    Abstract: Methods of forming at least a portion of an earth-boring tool include providing at least one insert in a mold cavity, providing particulate matter in the mold cavity, melting a metal and the hard material to form a molten composition, and casting the molten composition. Other methods include coating at least one surface of a mold cavity with a coating material having a composition differing from a composition of the mold, melting a metal and a hard material to form a molten composition, and casting the molten composition. Articles comprising at least a portion of an earth-boring tool include at least one insert and a solidified eutectic or near-eutectic composition including a metal phase and a hard material phase. Other articles include a solidified eutectic or near-eutectic composition including a metal phase and a hard material phase and a coating material in contact with the solidified eutectic or near-eutectic composition.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 24, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: John H. Stevens, Jimmy W. Eason
  • Publication number: 20110284179
    Abstract: Methods of forming at least a portion of an earth-boring tool include providing particulate matter comprising a hard material in a mold cavity, melting a metal and the hard material to form a molten composition comprising a eutectic or near-eutectic composition of the metal and the hard material, casting the molten composition to form the at least a portion of an earth-boring tool within the mold cavity, and adjusting a stoichiometry of at least one hard material phase of the at least a portion of the earth-boring tool. Methods of forming a roller cone of an earth-boring rotary drill bit comprise forming a molten composition, casting the molten composition within a mold cavity, solidifying the molten composition to form the roller cone, and converting an eta-phase region within the roller cone to at least one of WC and W2C.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 24, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: John H. Stevens, Jimmy W. Eason
  • Patent number: 8047309
    Abstract: Earth-boring tools include at least one up-drill feature disposed on a transition surface so as to be passive during down drilling and active during up drilling and/or back reaming operations. Systems for down drilling and up drilling with drill bits comprising one or more up-drill features are also disclosed. Furthermore, methods for forming a borehole with an earth-boring tool including such up-drill features and for forming an earth-boring tool comprising such up-drill features are also disclosed.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: November 1, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: James L. Overstreet, Robert J. Buske, Kenneth E. Gilmore, John H. Stevens
  • Publication number: 20110259647
    Abstract: Methods, systems and compositions for manufacturing downhole tools and downhole tool parts for drilling subterranean material are disclosed. A model having an external peripheral shape of a downhole tool or tool part is fabricated. Mold material is applied to the external periphery of the model. The mold material is permitted to harden to form a mold about the model. The model is eliminated and a composite matrix material is cast within the mold to form a finished downhole tool or tool part.
    Type: Application
    Filed: June 10, 2011
    Publication date: October 27, 2011
    Applicant: Baker Hughes Incorporated
    Inventors: John H. Stevens, Jimmy W. Eason
  • Publication number: 20110239545
    Abstract: Methods, systems and compositions for manufacturing downhole tools and downhole tool parts for drilling subterranean material are disclosed. A model having an external peripheral shape of a downhole tool or tool part is fabricated. Mold material is applied to the external periphery of the model. The mold material is permitted to harden to form a mold about the model. The model is eliminated and a composite matrix material is cast within the mold to form a finished downhole tool or tool part.
    Type: Application
    Filed: June 10, 2011
    Publication date: October 6, 2011
    Applicant: Baker Hughes Incorporated
    Inventors: John H. Stevens, Jimmy W. Eason
  • Patent number: 8007714
    Abstract: The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one of carbide, nitride, boride, oxide, and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: August 30, 2011
    Assignees: TDY Industries, Inc., Baker Hughes Incorporated
    Inventors: Prakash K. Mirchandani, Jimmy W. Eason, James J. Oakes, James C. Westhoff, Gabriel B. Collins, John H. Stevens, Steven G. Caldwell, Alfred J. Mosco
  • Patent number: 8002052
    Abstract: A rotary drill bit includes a bit body substantially formed of a particle-matrix composite material having an exterior surface and an abrasive wear-resistant material disposed on at least a portion of the exterior surface of the bit body. Methods for applying an abrasive wear-resistant material to a surface of a drill bit are also provided.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: August 23, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: John H. Stevens, James Leslie Overstreet, Kenneth E. Gilmore, Jeremy K. Morgan
  • Patent number: 7967833
    Abstract: The invention provides devices and methods for performing closed-chest surgical intervention within an internal cavity of a patient's heart or great vessel. A scope extending through a percutaneous intercostal penetration in the patient's chest is used to view an internal portion of the patient's chest. An internal penetration is formed in a wall of the heart or great vessel using cutting means introduced through a percutaneous penetration in an intercostal space in the patient's chest. An interventional tool is inserted through the internal penetration to perform a surgical procedure under visualization using the scope. A cutting tool is introduced into the patient's left atrium from a right portion of the patient's chest to remove the patient's mitral valve. A replacement valve is then introduced through an intercostal space in the right portion of the chest and through the internal penetration in the heart, and the replacement valve is attached in the mitral valve position.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: June 28, 2011
    Assignee: Edwards Lifesciences LLC
    Inventors: Wesley D. Sterman, Michi E. Garrison, Hanson S. Gifford, III, John H. Stevens, William S. Peters
  • Publication number: 20110142707
    Abstract: Methods of manufacturing rotary drill bits for drilling subterranean formations include forming a plurality of boron carbide particles into a body having a shape corresponding to at least a portion of a bit body of a rotary drill bit, infiltrating a plurality of boron carbide particles with a molten aluminum or aluminum-based material, and cooling the molten aluminum or aluminum-based material to form a solid matrix material surrounding the boron carbide particles. In additional methods, a green powder component is provided that includes a plurality of particles each comprising boron carbide and a plurality of particles each comprising aluminum or an aluminum-based alloy material. The green powder component is at least partially sintered to provide a bit body, and a shank is attached to the bit body.
    Type: Application
    Filed: February 7, 2011
    Publication date: June 16, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Heeman Choe, John H. Stevens, James C. Westhoff, Jimmy W. Eason, James L. Overstreet
  • Patent number: 7954569
    Abstract: The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one of carbide, nitride, boride, and oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: June 7, 2011
    Assignees: TDY Industries, Inc., Baker Hughes Incorporated
    Inventors: Prakash K. Mirchandani, Jimmy W. Eason, James J. Oakes, James C. Westhoff, Gabriel B. Collins, John H. Stevens, Steven G. Caldwell, Alfred J. Mosco
  • Publication number: 20110094341
    Abstract: Earth-boring rotary drill bits include bit bodies comprising a composite material including a plurality of hard phase regions or particles dispersed throughout a titanium or titanium-based alloy matrix material. The bits further include a cutting structure disposed on a face of the bit body. In some embodiments, the bit bodies may include a plurality of regions having differing material compositions. For example, the bit bodies may include a first region comprising a plurality of hard phase regions or particles dispersed throughout a titanium or titanium-based alloy matrix material, and a second region comprising a titanium or a titanium-based alloy material. Methods for forming such drill bits include at least partially sintering a plurality of hard particles and a plurality of particles comprising titanium or a titanium-based alloy material to form a bit body comprising a particle-matrix composite material. A shank may be attached directly to the bit body.
    Type: Application
    Filed: August 30, 2010
    Publication date: April 28, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Heeman Choe, John H. Stevens, James L. Overstreet, James C. Westhoff, Jimmy W. Eason
  • Publication number: 20110073233
    Abstract: A method of hardfacing a bit using a hardfacing sheet. The hardfacing sheet includes a hardfacing composition in a carrier material. The sheet is placed on a portion of the bit body, the sheet is heated at a designated spot using a localized heating source. At the same time, oxygen is substantially purged from the zone adjacent the designated spot. The heat debinds the carrier material from the sheet leaving the hardfacing composition. Continued heating transforms the hardfacing composition into hardfacing that is fused to the bit body.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: Baker Hughes Incorporated
    Inventors: Jimmy W. Eason, John H. Stevens, Travis E. Puzz, James L. Overstreet