Patents by Inventor John H. Stevens

John H. Stevens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7913779
    Abstract: Rotary drill bits for drilling subterranean formations include a bit body and at least one cutting structure disposed on a face thereof. The bit body includes a crown region comprising a particle-matrix composite material that includes a plurality of boron carbide particles dispersed throughout an aluminum or aluminum-based alloy matrix material. In some embodiments, the matrix material may include a continuous solid solution phase and a discontinuous precipitate phase. Methods of manufacturing rotary drill bits for drilling subterranean formations include infiltrating a plurality of boron carbide particles with a molten aluminum or aluminum-based material. In additional methods, a green powder component is provided that includes a plurality of particles each comprising boron carbide and a plurality of particles each comprising aluminum or an aluminum-based alloy material. The green powder component is at least partially sintered to provide a bit body, and a shank is attached to the bit body.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 29, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Heeman Choe, John H. Stevens, James C. Westhoff, Jimmy W. Eason, James L. Overstreet
  • Publication number: 20110030509
    Abstract: Methods of forming cutting element pockets in earth-boring tools may include forming a first recess and a second recess. A filler material is disposed in the second recess to the form at least a portion of a back surface of the pocket. Methods of forming cutting element pockets in earth-boring tools may include orienting a rotating cutter generally parallel to a longitudinal axis of a cutting element pocket to be formed in a body of an earth-boring tool and machining the cutting element pocket in the earth-boring tool. Methods of forming earth-boring tools include forming a body comprising at least one blade and forming at least one cutting element pocket in the at least one blade.
    Type: Application
    Filed: October 20, 2010
    Publication date: February 10, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: John H. Stevens, Nicholas J. Lyons
  • Publication number: 20100326739
    Abstract: Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of silicon carbide particles dispersed throughout a matrix material, such as, for example, an aluminum or aluminum-based alloy. In some embodiments, the silicon carbide particles comprise an ABC—SiC material. Methods of manufacturing such tools include providing a plurality of silicon carbide particles within a matrix material. Optionally, the silicon carbide particles may comprise ABC—SiC material, and the ABC—SiC material may be toughened to increase a fracture toughness exhibited by the ABC—SiC material. In some methods, at least one of an infiltration process and a powder compaction and consolidation process may be employed.
    Type: Application
    Filed: September 3, 2010
    Publication date: December 30, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Heeman Choe, John H. Stevens, James C. Westhoff, Jimmy W. Eason, James L. Overstreet
  • Publication number: 20100319492
    Abstract: Methods for forming bodies of earth-boring drill bits and other tools include milling a plurality of hard particles and a plurality of particles comprising a matrix material to form a mill product comprising powder particles, separating the particles into a plurality of particle size fractions. Some of the particles from the fractions may be combined to form a powder mixture, which may be pressed to form a green body. Additional methods include mixing a plurality of hard particles and a plurality of particles comprising a matrix material to form a powder mixture, and pressing the powder mixture with pressure having an oscillating magnitude to form a green body. In yet additional methods a powder mixture may be pressed within a deformable container to form a green body and drainage of liquid from the container is enabled as the powder mixture is pressed.
    Type: Application
    Filed: August 27, 2010
    Publication date: December 23, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Redd H. Smith, John H. Stevens
  • Publication number: 20100307838
    Abstract: Methods, systems and compositions for manufacturing downhole tools and downhole tool parts for drilling subterranean material are disclosed. A model having an external peripheral shape of a downhole tool or tool part is fabricated. Mold material is applied to the external periphery of the model. The mold material is permitted to harden to form a mold about the model. The model is eliminated and a composite matrix material is cast within the mold to form a finished downhole tool or tool part.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 9, 2010
    Applicant: Baker Hughes Incorporated
    Inventors: John H. Stevens, Jimmy W. Eason
  • Patent number: 7841259
    Abstract: Methods for forming bodies of earth-boring drill bits and other tools include milling a plurality of hard particles and a plurality of particles comprising a matrix material to form a mill product comprising powder particles, separating the particles into a plurality of particle size fractions. Some of the particles from the fractions may be combined to form a powder mixture, which may be pressed to form a green body. Additional methods include mixing a plurality of hard particles and a plurality of particles comprising a matrix material to form a powder mixture, and pressing the powder mixture with pressure having an oscillating magnitude to form a green body. In yet additional methods a powder mixture may be pressed within a deformable container to form a green body and drainage of liquid from the container is enabled as the powder mixture is pressed.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: November 30, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens
  • Patent number: 7836980
    Abstract: Methods of forming cutting element pockets in blades of earth-boring tools include forming a first recess and a second recess intersecting at a location defining the a back of the pocket using a cutter oriented in a manner so as to avoid tool path interference with adjacent blades. A filler material is disposed in the second recess to the location of the back of the pocket. Earth-boring tools including such cutting element pockets.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: November 23, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: John H. Stevens, Nicholas J. Lyons
  • Publication number: 20100276205
    Abstract: Methods of forming earth-boring rotary drill bits include providing a bit body, providing a shank that is configured for attachment to a drill string, and attaching the shank to the bit body. Providing a bit body includes providing a green powder component having a first region having a first composition and a second region having a second, different composition, and at least partially sintering the green powder component. Other methods include providing a powder mixture, pressing the powder mixture to form a green component, and sintering the green component to a final density. A shank is provided that includes an aperture, and a feature is machined in a surface of the bit body. The aperture is aligned with the feature, and a retaining member is inserted through the aperture. An earth-boring bit includes a bit body comprising a particle-matrix composite material including a plurality of hard particles dispersed throughout a matrix material. A shank is attached to the bit body using a retaining member.
    Type: Application
    Filed: July 7, 2010
    Publication date: November 4, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: James A. Oxford, Jimmy W. Eason, Redd H. Smith, John H. Stevens, Nicholas J. Lyons
  • Publication number: 20100263935
    Abstract: Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Jared D. Gladney, James A. Oxford, Benjamin J. Chrest
  • Patent number: 7807099
    Abstract: Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of silicon carbide particles dispersed throughout a matrix material, such as, for example, an aluminum or aluminum-based alloy. In some embodiments, the silicon carbide particles comprise an ABC—SiC material. Methods of manufacturing such tools include providing a plurality of silicon carbide particles within a matrix material. Optionally, the silicon carbide particles may comprise ABC—SiC material, and the ABC—SiC material may be toughened to increase a fracture toughness exhibited by the ABC—SiC material. In some methods, at least one of an infiltration process and a powder compaction and consolidation process may be employed.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: October 5, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Heeman Choe, John H. Stevens, James C. Westhoff, Jimmy W. Eason, James L. Overstreet
  • Patent number: 7802495
    Abstract: Methods of forming earth-boring rotary drill bits include providing a bit body, providing a shank that is configured for attachment to a drill string, and attaching the shank to the bit body. Providing a bit body includes providing a green powder component having a first region having a first composition and a second region having a second, different composition, and at least partially sintering the green powder component. Other methods include providing a powder mixture, pressing the powder mixture to form a green component, and sintering the green component to a final density. A shank is provided that includes an aperture, and a feature is machined in a surface of the bit body. The aperture is aligned with the feature, and a retaining member is inserted through the aperture. An earth-boring bit includes a bit body comprising a particle-matrix composite material including a plurality of hard particles dispersed throughout a matrix material. A shank is attached to the bit body using a retaining member.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: September 28, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: James A. Oxford, Jimmy W. Eason, Redd H. Smith, John H. Stevens, Nicholas J. Lyons
  • Patent number: 7784567
    Abstract: Earth-boring rotary drill bits include bit bodies comprising a composite material including a plurality of hard phase regions or particles dispersed throughout a titanium or titanium-based alloy matrix material. The bits further include a cutting structure disposed on a face of the bit body. In some embodiments, the bit bodies may include a plurality of regions having differing material compositions. For example, the bit bodies may include a first region comprising a plurality of hard phase regions or particles dispersed throughout a titanium or titanium-based alloy matrix material, and a second region comprising a titanium or a titanium-based alloy material. Methods for forming such drill bits include at least partially sintering a plurality of hard particles and a plurality of particles comprising titanium or a titanium-based alloy material to form a bit body comprising a particle-matrix composite material. A shank may be attached directly to the bit body.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: August 31, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Heeman Choe, John H. Stevens, James L. Overstreet, James C. Westhoff, Jimmy W. Eason
  • Patent number: 7776256
    Abstract: Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: August 17, 2010
    Assignee: Baker Huges Incorporated
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Jared D. Gladney, James A. Oxford, Benjamin J. Chrest
  • Publication number: 20100193252
    Abstract: The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one of carbide, nitride, boride, and oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder.
    Type: Application
    Filed: April 20, 2010
    Publication date: August 5, 2010
    Applicants: TDY INDUSTRIES, INC., BAKER HUGHES INCORPORATED
    Inventors: Prakash K. Mirchandani, Jimmy W. Eason, James J. Oakes, James C. Westhoff, Gabriel B. Collins, John H. Stevens, Steven G. Caldwell, Alfred J. Mosco
  • Publication number: 20100192475
    Abstract: A method of making an earth-boring rotary drill bit includes providing a plurality of hard particles in a mold to define a particle precursor of the first region and the second region and infiltrating the particle precursor of the first region with a molten first matrix material forming a molten first particle-matrix mixture. The method also includes infiltrating the particle precursor of the second region with a molten second matrix material forming a molten second particle-matrix mixture; and cooling the molten first particle-matrix mixture and the molten second particle-matrix mixture to solidify the first matrix material and the second matrix material and form a bit body having a first particle-matrix composite material having a first material composition in the first region and a second particle-matrix composite material having a second material composition in the second region, wherein the first particle-matrix composite material and the second particle-matrix composite material are different.
    Type: Application
    Filed: August 3, 2009
    Publication date: August 5, 2010
    Inventors: John H. Stevens, Jimmy W. Eason
  • Publication number: 20100193255
    Abstract: An earth-boring rotary drill bit includes a bit body, with a first region configured to carry a plurality of cutters for engaging a subterranean earth formation of a first particle-matrix composite material and a second region configured for attachment to a drill string of a second particle-matrix composite material having a second material composition, and an annular shank extending from the second region. Each of the first particle-matrix composite material and second particle-matrix composite material has a cast microstructure. A method of making an earth-boring rotary drill bit includes providing a plurality of hard particles in a mold to define a particle precursor; infiltrating the particle precursor sequentially with a plurality of molten matrix materials to form a corresponding plurality of layers, each comprising a particle-matrix mixture; and cooling the plurality of particle-matrix mixtures to solidify the matrix materials and form the bit body.
    Type: Application
    Filed: August 3, 2009
    Publication date: August 5, 2010
    Inventors: John H. Stevens, Jimmy W. Eason
  • Publication number: 20100155147
    Abstract: A shrink-fit sleeve assembly comprising a bit body includes at least one sleeve port with a substantially tubular sleeve disposed therein and interferingly engaged therewith. The sleeve port includes an internal surface of substantially circular cross-section, and the tubular sleeve includes an internal nozzle port and an external surface of substantially circular cross-section. A lateral dimension of an external surface is equal to or greater than a first dimension at ambient temperature. A nozzle assembly and a method of manufacturing or retrofitting a drill bit are also disclosed.
    Type: Application
    Filed: March 10, 2010
    Publication date: June 24, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: James Andy Oxford, John H. Stevens, James L. Duggan, Redd H. Smith
  • Publication number: 20100159157
    Abstract: A system and method for the automated or “robotic” application of hardfacing to a surface of a drill bit.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: John H. Stevens, James L. Overstreet, David K. Luce
  • Publication number: 20100133805
    Abstract: Coupling members for coupling an earth-boring drill tool to a drill string, drilling tools including a coupling member attached to a body of an earth-boring drill tool, methods for forming drilling tools including a coupling member, and methods for forming coupling members are disclosed. A coupling member may include a distal region comprising a first material composition and a proximal region comprising a second, different material composition. A drilling tool may include a body that is attached to a coupling member with a varied material composition for coupling the body to a drill string.
    Type: Application
    Filed: October 22, 2009
    Publication date: June 3, 2010
    Inventors: John H. Stevens, Jimmy W. Eason, Ian D. Harris
  • Publication number: 20100108399
    Abstract: Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of at least partially carburized monotungsten carbide and ditungsten carbide eutectic particles dispersed throughout a matrix material. In some embodiments, the particles are at least substantially fully carburized monotungsten carbide and ditungsten carbide eutectic particles. In further embodiments, the particles are generally spherical or at least substantially spherical. Methods of forming such particles include exposing a plurality of monotungsten carbide and ditungsten carbide eutectic particles to a gas containing carbon. Methods of manufacturing such tools include providing a plurality of at least partially carburized monotungsten carbide and ditungsten carbide eutectic particles or at least substantially completely carburized monotungsten carbide and ditungsten carbide eutectic particles within a matrix material.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Inventors: Jimmy W. Eason, John H. Stevens, James L. Overstreet