Patents by Inventor John H. Stevens

John H. Stevens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7681668
    Abstract: A shrink-fit sleeve assembly comprising a bit body includes at least one sleeve port with a substantially tubular sleeve disposed therein and interferingly engaged therewith. The sleeve port includes an internal surface of substantially circular cross-section, and the tubular sleeve includes an internal nozzle port and an external surface of substantially circular cross-section. A lateral dimension of an external surface is equal to or greater than a first dimension at ambient temperature. A nozzle assembly and a method of manufacturing or retrofitting a drill bit are also disclosed.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: March 23, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: James Andy Oxford, John H. Stevens, James L. Duggan, Redd H. Smith
  • Publication number: 20100006345
    Abstract: Methods of forming bit bodies for earth-boring bits include assembling green components that have been infiltrated, brown components that have been infiltrated, or fully sintered components that have been infiltrated, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering or hot isostatic pressing the green body or brown body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin.
    Type: Application
    Filed: July 9, 2008
    Publication date: January 14, 2010
    Inventor: John H. Stevens
  • Publication number: 20090301786
    Abstract: Geometric compensation techniques are used to improve the accuracy by which features may be located on drill bits formed using particle compaction and sintering processes. In some embodiments, a positional error to be exhibited by at least one feature in a less than fully sintered bit body upon fully sintering the bit body is predicted and the at least one feature is formed on the less than fully sintered bit body at a location at least partially determined by the predicted positional error. In other embodiments, bit bodies of earth-boring rotary drill bits are designed to include a design drilling profile and a less than fully sintered bit body is formed including a drilling profile having a shape differing from a shape of the design drilling profile. Less than fully sintered bit bodies of earth-boring rotary drill bits are formed using such methods.
    Type: Application
    Filed: June 4, 2008
    Publication date: December 10, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Oliver Matthews, III
  • Publication number: 20090301788
    Abstract: A manufacturing method and drill bit having either a preformed steel powder blank or machined steel core and abrasion and erosion resistant material components attached thereon.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 10, 2009
    Inventors: John H. Stevens, James L. Christie
  • Publication number: 20090044663
    Abstract: Methods of forming cutting element pockets in blades of earth-boring tools include forming a first recess and a second recess intersecting at a location defining the a back of the pocket using a cutter oriented in a manner so as to avoid tool path interference with adjacent blades. A filler material is disposed in the second recess to the location of the back of the pocket. Earth-boring tools having such cutting element pockets are also disclosed.
    Type: Application
    Filed: August 13, 2007
    Publication date: February 19, 2009
    Inventors: John H. Stevens, Nicholas J. Lyons
  • Publication number: 20090032310
    Abstract: Methods for welding a particle-matrix composite body to another body and repairing particle-matrix composite bodies are disclosed. Additionally, earth-boring tools having a joint that includes an overlapping root portion and a weld groove having a face portion with a first bevel portion and a second bevel portion are disclosed. In some embodiments, a particle-matrix bit body of an earth-boring tool may be repaired by removing a damaged portion, heating the particle-matrix composite bit body, and forming a built-up metallic structure thereon. In other embodiments, a particle-matrix composite body may be welded to a metallic body by forming a joint, heating the particle-matrix composite body, melting a metallic filler material forming a weld bead and cooling the welded particle-matrix composite body, metallic filler material and metallic body at a controlled rate.
    Type: Application
    Filed: July 29, 2008
    Publication date: February 5, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: John H. Stevens, Redd H. Smith, James A. Oxford, Jose E. Ramirez, Nathan D. Ames, Shuchi P. Khurana
  • Publication number: 20090031863
    Abstract: Methods for forming earth-boring tools include providing a metal or metal alloy bonding agent at an interface between a first element and a second element and sintering the first element, the second element, and the boding agent to form a bond between the first element and the second element at the interface. The methods may be used, for example, to bond together portions of a body of an earth-boring tool (which may facilitate, for example, the formation of cutting element pockets) or to bond cutting elements to a body of an earth-boring tool (e.g., a bit body of a fixed-cutter earth-boring drill bit or a cone of a roller cone earth-boring drill bit). At least partially formed earth-boring tools include a metal or metal alloy bonding agent at an interface between two or more elements, at least one of which may comprise a green or brown structure.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Nicholas J. Lyons, Jimmy W. Eason, Redd H. Smith, John H. Stevens
  • Publication number: 20080251297
    Abstract: Earth-boring tools include at least one up-drill feature disposed on a transition surface so as to be passive during down drilling and active during up drilling and/or back reaming operations. Systems for down drilling and up drilling with drill bits comprising one or more up-drill features are also disclosed. Furthermore, methods for forming a borehole with an earth-boring tool including such up-drill features and for forming an earth-boring tool comprising such up-drill features are also disclosed.
    Type: Application
    Filed: June 5, 2008
    Publication date: October 16, 2008
    Inventors: James L. Overstreet, Robert J. Buske, Kenneth E. Gilmore, John H. Stevens
  • Publication number: 20080236899
    Abstract: A shrink-fit sleeve assembly comprising a bit body includes at least one sleeve port with a substantially tubular sleeve disposed therein and interferingly engaged therewith. The sleeve port includes an internal surface of substantially circular cross-section, and the tubular sleeve includes an internal nozzle port and an external surface of substantially circular cross-section. A lateral dimension of the external surface is equal to or greater than the first dimension at ambient temperature. A nozzle assembly and a method of manufacturing or retrofitting a drill bit are also disclosed.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: James Andy Oxford, John H. Stevens, James L. Duggan, Redd H. Smith
  • Publication number: 20080223622
    Abstract: Methods of forming cutting element pockets in earth-boring tools include machining at least one recess to define at least one surface of a cutting element pocket using a cutter oriented at an angle to a longitudinal axis of the cutting element pocket. Methods of forming earth-boring tools include forming a bit body and forming at least one cutting element pocket therein using a rotating cutter oriented at an angle relative to a longitudinal axis of the cutting element pocket being formed. Earth-boring tools have a bit body comprising a first surface defining a lateral sidewall of a cutting element pocket, a second surface defining an end wall of the cutting element pocket, and another surface defining a groove located between the first and second surfaces that extends into the body to enable a cutting element to abut against an area of the lateral sidewall and end wall of the pocket.
    Type: Application
    Filed: March 13, 2007
    Publication date: September 18, 2008
    Inventors: James L. Duggan, John H. Stevens, Redd H. Smith
  • Publication number: 20080202814
    Abstract: Methods of forming cutter assemblies for use on earth-boring tools include sintering a cone structure to fuse one or more cutting elements thereto. In some embodiments, one or more green, brown, or fully sintered cutting elements may be positioned on a green or brown cone structure prior to sintering the cone structure to a final density. Cutter assemblies may be formed by such methods, and such cutter assemblies may be used in earth-boring tools such as, for example, earth-boring rotary drill bits and hole openers.
    Type: Application
    Filed: February 23, 2007
    Publication date: August 28, 2008
    Inventors: Nicholas J. Lyons, John H. Stevens, Redd H. Smith
  • Publication number: 20080163723
    Abstract: The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one carbide, nitride, boride, and oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder.
    Type: Application
    Filed: February 20, 2008
    Publication date: July 10, 2008
    Applicants: TDY Industries Inc., Baker Hughes Incorporated
    Inventors: Prakash K. Mirchandani, Jimmy W. Eason, James J. Oakes, James C. Westhoff, Gabriel B. Collins, John H. Stevens, Steven G. Caldwell, Alfred J. Mosco
  • Publication number: 20080156148
    Abstract: Methods for forming bodies of earth-boring drill bits and other tools include milling a plurality of hard particles and a plurality of particles comprising a matrix material to form a mill product comprising powder particles, separating the particles into a plurality of particle size fractions. Some of the particles from the fractions may be combined to form a powder mixture, which may be pressed to form a green body. Additional methods include mixing a plurality of hard particles and a plurality of particles comprising a matrix material to form a powder mixture, and pressing the powder mixture with pressure having an oscillating magnitude to form a green body. In yet additional methods a powder mixture may be pressed within a deformable container to form a green body and drainage of liquid from the container is enabled as the powder mixture is pressed.
    Type: Application
    Filed: December 27, 2006
    Publication date: July 3, 2008
    Inventors: Redd H. Smith, John H. Stevens
  • Publication number: 20080135305
    Abstract: Displacement members for use in forming a bit body of an earth-boring rotary drill bit include a body having an exterior surface, at least a portion of which is configured to define at least one surface of the bit body as the bit body is formed around the displacement member. In some embodiments, the body may be hollow and/or porous. Methods for forming earth-boring rotary drill bits include positioning such a displacement member in a mold and forming a bit body around the displacement member in the mold. Additional methods include pressing a plurality of particles to form a body, forming at least one recess in the body, positioning such a displacement member in the recess, and sintering the body to form a bit body.
    Type: Application
    Filed: December 7, 2006
    Publication date: June 12, 2008
    Inventors: Redd H. Smith, John H. Stevens
  • Publication number: 20080128176
    Abstract: Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of silicon carbide particles dispersed throughout a matrix material, such as, for example, an aluminum or aluminum-based alloy. In some embodiments, the silicon carbide particles comprise an ABC—SiC material. Methods of manufacturing such tools include providing a plurality of silicon carbide particles within a matrix material. Optionally, the silicon carbide particles may comprise ABC—SiC material, and the ABC—SiC material may be toughened to increase a fracture toughness exhibited by the ABC—SiC material. In some methods, at least one of an infiltration process and a powder compaction and consolidation process may be employed.
    Type: Application
    Filed: December 27, 2007
    Publication date: June 5, 2008
    Inventors: Heeman Choe, John H. Stevens, James C. Westhoff, Jimmy W. Eason, James L. Overstreet
  • Patent number: 7213601
    Abstract: A method of treatment of congestive heart failure comprises the steps of introducing an aortic occlusion catheter through a patient's peripheral artery, the aortic occlusion catheter having an occluding member movable from a collapsed position to an expanded position; positioning the occluding member in the patient's ascending aorta; moving the occluding member from the collapsed shape to the expanded shape after the positioning step; introducing cardioplegic fluid into the patient's coronary blood vessels to arrest the patient's heart; maintaining circulation of oxygenated blood through the patient's arterial system; and reshaping an outer wall of the patient's heart while the heart is arrested so as to reduce the transverse dimension of the left ventricle.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: May 8, 2007
    Assignee: Heartport, Inc
    Inventors: John H. Stevens, Lee R. Bolduc, Stephen W. Boyd, Brian S. Donlon, Hanson S. Gifford, III, Philip R. Houle, Daniel C. Rosenman
  • Patent number: 7131447
    Abstract: A method for closed-chest cardiac surgical intervention relies on viewing the cardiac region through a thoracoscope or other viewing scope and endovascularly partitioning the patient's arterial system at a location within the ascending aorta The cardiopulmonary bypass and cardioplegia can be induced, and a variety of surgical procedures performed on the stopped heart using percutaneously introduced tools. The method of the present invention will be particularly suitable for forming coronary artery bypass grafts, where an arterial blood source is created using least invasive surgical techniques, and the arterial source is connected to a target location within a coronary artery while the patient is under cardiopulmonary bypass and cardioplegia.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: November 7, 2006
    Assignee: Heartport, Inc.
    Inventors: Wesley D. Sterman, Lawrence C. Siegel, Patricia E. Curtis, John H. Stevens, William S. Peters, Timothy R. Machold
  • Patent number: 7100614
    Abstract: Devices, systems, and methods are provided for accessing the interior of the heart and performing procedures therein while the heart is beating. In one embodiment, a tubular access device having an inner lumen is provided for positioning through a penetration in a muscular wall of the heart, the access device having a means for sealing within the penetration to inhibit leakage of blood through the penetration. The sealing means may comprise a balloon or flange on the access device, or a suture placed in the heart wall to gather the heart tissue against the access device. An obturator is removably positionable in the inner lumen of the access device, the obturator having a cutting means at its distal end for penetrating the muscular wall of the heart. The access device is preferably positioned through an intercostal space and through the muscular wall of the heart.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: September 5, 2006
    Assignee: Heartport, Inc.
    Inventors: John H. Stevens, Bruce A. Reitz, Alex T. Roth, William S. Peters, Hanson S. Gifford
  • Patent number: 7028692
    Abstract: A method for closed-chest cardiac surgical intervention relies on viewing the cardiac region through a thoracoscope or other viewing scope and endovascularly partitioning the patient's arterial system at a location within the ascending aorta. The cardiopulmonary bypass and cardioplegia can be induced, and a variety of surgical procedures performed on the stopped heart using percutaneously introduced tools. The method of the present invention will be particularly suitable for forming coronary artery bypass grafts, where an arterial blood source is created using least invasive surgical techniques, and the arterial source is connected to a target location within a coronary artery while the patient is under cardiopulmonary bypass and cardioplegia.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: April 18, 2006
    Assignee: Heartport, Inc.
    Inventors: Wesley D. Sterman, Lawrence C. Siegel, Patricia E. Curtis, John H. Stevens, William S. Peters, Timothy R. Machold
  • Patent number: 6955175
    Abstract: Devices, systems, and methods are provided for accessing the interior of the heart and performing procedures therein while the heart is beating. In one embodiment, a tubular access device having an inner lumen is provided for positioning through a penetration in a muscular wall of the heart, the access device having a means for sealing within the penetration to inhibit leakage of blood through the penetration. The sealing means may comprise a balloon or flange on the access device, or a suture placed in the heart wall to gather the heart tissue against the access device. An obturator is removably positionable in the inner lumen of the access device, the obturator having a cutting means at its distal end for penetrating the muscular wall of the heart. The access device is preferably positioned through an intercostal space and through the muscular wall of the heart.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: October 18, 2005
    Inventors: John H. Stevens, Bruce A. Reitz, Alex T. Roth, William S. Peters, Hanson S. Gifford