Patents by Inventor John K. Zahurak
John K. Zahurak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230413559Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.Type: ApplicationFiled: June 13, 2023Publication date: December 21, 2023Inventors: Sanh D. Tang, john K. Zahurak
-
Publication number: 20230269937Abstract: Methods of forming multi-tiered semiconductor devices are described, along with apparatus and systems that include them. In one such method, an opening is formed in a tier of semiconductor material and a tier of dielectric. A portion of the tier of semiconductor material exposed by the opening is processed so that the portion is doped differently than the remaining semiconductor material in the tier. At least substantially all of the remaining semiconductor material of the tier is removed, leaving the differently doped portion of the tier of semiconductor material as a charge storage structure. A tunneling dielectric is formed on a first surface of the charge storage structure and an intergate dielectric is formed on a second surface of the charge storage structure. Additional embodiments are also described.Type: ApplicationFiled: February 13, 2023Publication date: August 24, 2023Inventors: Sanh D. Tang, John K. Zahurak
-
Patent number: 11700730Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.Type: GrantFiled: December 21, 2020Date of Patent: July 11, 2023Assignee: Micron Technology, Inc.Inventors: Sanh D. Tang, John K. Zahurak
-
Patent number: 11581324Abstract: Methods of forming multi-tiered semiconductor devices are described, along with apparatus and systems that include them. In one such method, an opening is formed in a tier of semiconductor material and a tier of dielectric. A portion of the tier of semiconductor material exposed by the opening is processed so that the portion is doped differently than the remaining semiconductor material in the tier. At least substantially all of the remaining semiconductor material of the tier is removed, leaving the differently doped portion of the tier of semiconductor material as a charge storage structure. A tunneling dielectric is formed on a first surface of the charge storage structure and an intergate dielectric is formed on a second surface of the charge storage structure. Additional embodiments are also described.Type: GrantFiled: March 9, 2020Date of Patent: February 14, 2023Assignee: Micron Technology, Inc.Inventors: Sanh D. Tang, John K. Zahurak
-
Patent number: 11508734Abstract: Some embodiments include an integrated assembly having digit lines extending along a first direction, and rails over the digit lines. The rails include semiconductor-material pillars alternating with intervening insulative regions. The rails have upper, middle and lower segments. A first insulative material is along the upper and lower segments of the rails. A second insulative material is along the middle segments of the rails. The second insulative material differs from the first insulative material in one or both of thickness and composition. Conductive gate material is along the middle segments of the rails and is spaced from the middle segments by the second insulative material. Channel regions are within the middle segments of the pillars, upper source/drain regions are within the upper segments of the pillars and lower source/drain regions are within the lower segments of the pillars. Some embodiments include methods of forming integrated assemblies.Type: GrantFiled: December 11, 2020Date of Patent: November 22, 2022Assignee: Micron Technology, Inc.Inventors: Amirhasan Nourbakhsh, John K. Zahurak, Sanh D. Tang, Silvia Borsari, Hong Li
-
Publication number: 20210183887Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.Type: ApplicationFiled: December 21, 2020Publication date: June 17, 2021Inventors: Sanh D. Tang, John K. Zahurak
-
Publication number: 20210098463Abstract: Some embodiments include an integrated assembly having digit lines extending along a first direction, and rails over the digit lines. The rails include semiconductor-material pillars alternating with intervening insulative regions. The rails have upper, middle and lower segments. A first insulative material is along the upper and lower segments of the rails. A second insulative material is along the middle segments of the rails. The second insulative material differs from the first insulative material in one or both of thickness and composition. Conductive gate material is along the middle segments of the rails and is spaced from the middle segments by the second insulative material. Channel regions are within the middle segments of the pillars, upper source/drain regions are within the upper segments of the pillars and lower source/drain regions are within the lower segments of the pillars. Some embodiments include methods of forming integrated assemblies.Type: ApplicationFiled: December 11, 2020Publication date: April 1, 2021Applicant: Micron Technology, Inc.Inventors: Amirhasan Nourbakhsh, John K. Zahurak, Sanh D. Tang, Silvia Borsari, Hong Li
-
Patent number: 10886282Abstract: Some embodiments include an integrated assembly having digit lines extending along a first direction, and rails over the digit lines. The rails include semiconductor-material pillars alternating with intervening insulative regions. The rails have upper, middle and lower segments. A first insulative material is along the upper and lower segments of the rails. A second insulative material is along the middle segments of the rails. The second insulative material differs from the first insulative material in one or both of thickness and composition. Conductive gate material is along the middle segments of the rails and is spaced from the middle segments by the second insulative material. Channel regions are within the middle segments of the pillars, upper source/drain regions are within the upper segments of the pillars and lower source/drain regions are within the lower segments of the pillars. Some embodiments include methods of forming integrated assemblies.Type: GrantFiled: March 26, 2020Date of Patent: January 5, 2021Assignee: Micron Technology, Inc.Inventors: Amirhasan Nourbakhsh, John K. Zahurak, Sanh D. Tang, Silvia Borsari, Hong Li
-
Patent number: 10872903Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.Type: GrantFiled: December 16, 2019Date of Patent: December 22, 2020Assignee: Micron Technology, Inc.Inventors: Sanh D. Tang, John K. Zahurak
-
Publication number: 20200303391Abstract: Methods of forming multi-tiered semiconductor devices are described, along with apparatus and systems that include them. In one such method, an opening is formed in a tier of semiconductor material and a tier of dielectric. A portion of the tier of semiconductor material exposed by the opening is processed so that the portion is doped differently than the remaining semiconductor material in the tier. At least substantially all of the remaining semiconductor material of the tier is removed, leaving the differently doped portion of the tier of semiconductor material as a charge storage structure. A tunneling dielectric is formed on a first surface of the charge storage structure and an intergate dielectric is formed on a second surface of the charge storage structure. Additional embodiments are also described.Type: ApplicationFiled: March 9, 2020Publication date: September 24, 2020Inventors: Sanh D. Tang, John K. Zahurak
-
Publication number: 20200235103Abstract: Some embodiments include an integrated assembly having digit lines extending along a first direction, and rails over the digit lines. The rails include semiconductor-material pillars alternating with intervening insulative regions. The rails have upper, middle and lower segments. A first insulative material is along the upper and lower segments of the rails. A second insulative material is along the middle segments of the rails. The second insulative material differs from the first insulative material in one or both of thickness and composition. Conductive gate material is along the middle segments of the rails and is spaced from the middle segments by the second insulative material. Channel regions are within the middle segments of the pillars, upper source/drain regions are within the upper segments of the pillars and lower source/drain regions are within the lower segments of the pillars. Some embodiments include methods of forming integrated assemblies.Type: ApplicationFiled: March 26, 2020Publication date: July 23, 2020Applicant: Micron Technology, Inc.Inventors: Amirhasan Nourbakhsh, John K. Zahurak, Sanh D. Tang, Silvia Borsari, Hong Li
-
Publication number: 20200119046Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.Type: ApplicationFiled: December 16, 2019Publication date: April 16, 2020Inventors: Sanh D. Tang, John K. Zahurak
-
Publication number: 20200111796Abstract: Some embodiments include an integrated assembly having digit lines extending along a first direction, and rails over the digit lines. The rails include semiconductor-material pillars alternating with intervening insulative regions. The rails have upper, middle and lower segments. A first insulative material is along the upper and lower segments of the rails. A second insulative material is along the middle segments of the rails. The second insulative material differs from the first insulative material in one or both of thickness and composition. Conductive gate material is along the middle segments of the rails and is spaced from the middle segments by the second insulative material. Channel regions are within the middle segments of the pillars, upper source/drain regions are within the upper segments of the pillars and lower source/drain regions are within the lower segments of the pillars. Some embodiments include methods of forming integrated assemblies.Type: ApplicationFiled: October 4, 2018Publication date: April 9, 2020Applicant: Micron Technology, Inc.Inventors: Amirhasan Nourbakhsh, John K. Zahurak, Sanh D. Tang, Silvia Borsari, Hong Li
-
Patent number: 10615165Abstract: Some embodiments include an integrated assembly having digit lines extending along a first direction, and rails over the digit lines. The rails include semiconductor-material pillars alternating with intervening insulative regions. The rails have upper, middle and lower segments. A first insulative material is along the upper and lower segments of the rails. A second insulative material is along the middle segments of the rails. The second insulative material differs from the first insulative material in one or both of thickness and composition. Conductive gate material is along the middle segments of the rails and is spaced from the middle segments by the second insulative material. Channel regions are within the middle segments of the pillars, upper source/drain regions are within the upper segments of the pillars and lower source/drain regions are within the lower segments of the pillars. Some embodiments include methods of forming integrated assemblies.Type: GrantFiled: October 4, 2018Date of Patent: April 7, 2020Assignee: Micron Technology, Inc.Inventors: Amirhasan Nourbakhsh, John K. Zahurak, Sanh D. Tang, Silvia Borsari, Hong Li
-
Patent number: 10586802Abstract: Methods of forming multi-tiered semiconductor devices are described, along with apparatus and systems that include them. In one such method, an opening is formed in a tier of semiconductor material and a tier of dielectric. A portion of the tier of semiconductor material exposed by the opening is processed so that the portion is doped differently than the remaining semiconductor material in the tier. At least substantially all of the remaining semiconductor material of the tier is removed, leaving the differently doped portion of the tier of semiconductor material as a charge storage structure. A tunneling dielectric is formed on a first surface of the charge storage structure and an intergate dielectric is formed on a second surface of the charge storage structure. Additional embodiments are also described.Type: GrantFiled: August 30, 2017Date of Patent: March 10, 2020Assignee: Micron Technology, Inc.Inventors: Sanh D. Tang, John K. Zahurak
-
Patent number: 10510769Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.Type: GrantFiled: September 7, 2018Date of Patent: December 17, 2019Assignee: Micron Technology, Inc.Inventors: Sanh D. Tang, John K. Zahurak
-
Patent number: 10325926Abstract: Methods for fabricating semiconductor-metal-on-insulator (SMOI) structures include forming an acceptor wafer including an insulator material on a first semiconductor substrate, forming a donor wafer including a conductive material and an amorphous silicon material on a second semiconductor substrate, and bonding the amorphous silicon material of the donor wafer to the insulator material of the acceptor wafer. SMOI structures formed from such methods are also disclosed, as are semiconductor devices including such SMOI structures.Type: GrantFiled: March 20, 2017Date of Patent: June 18, 2019Assignee: Micron Technology, Inc.Inventors: Sanh D. Tang, Ming Zhang, Andrew M. Bayless, John K. Zahurak
-
Publication number: 20190006387Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.Type: ApplicationFiled: September 7, 2018Publication date: January 3, 2019Inventors: Sanh D. Tang, John K. Zahurak
-
Patent number: 10090324Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.Type: GrantFiled: October 2, 2017Date of Patent: October 2, 2018Assignee: Micron Technology, Inc.Inventors: Sanh D. Tang, John K. Zahurak
-
Patent number: 10069067Abstract: Some embodiments include methods of forming memory cells. A series of rails is formed to include bottom electrode contact material. Sacrificial material is patterned into a series of lines that cross the series of rails. A pattern of the series of lines is transferred into the bottom electrode contact material. At least a portion of the sacrificial material is subsequently replaced with top electrode material. Some embodiments include memory arrays that contain a second series of electrically conductive lines crossing a first series of electrically conductive lines. Memory cells are at locations where the electrically conductive lines of the second series overlap the electrically conductive lines of the first series. First and second memory cell materials are within the memory cell locations. The first memory cell material is configured as planar sheets and the second memory cell material is configured as upwardly-opening containers.Type: GrantFiled: December 28, 2017Date of Patent: September 4, 2018Assignee: Micron Technology, Inc.Inventors: Sanh D. Tang, Scott E. Sills, John K. Zahurak