Patents by Inventor John K. Zahurak

John K. Zahurak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140030856
    Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak
  • Publication number: 20140015001
    Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided reduce a need for manufacturing methods such as deep dopant implants.
    Type: Application
    Filed: September 16, 2013
    Publication date: January 16, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak, Michael P. Violette
  • Patent number: 8629527
    Abstract: Methods of pitch doubling of asymmetric features and semiconductor structures including the same are disclosed. In one embodiment, a single photolithography mask may be used to pitch double three features, for example, of a DRAM array. In one embodiment, two wordlines and a grounded gate over field may be pitch doubled. Semiconductor structures including such features are also disclosed.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: January 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kunal R. Parekh, John K. Zahurak
  • Publication number: 20130334483
    Abstract: A method of forming a resistive memory element comprises forming an oxide material over a first electrode. The oxide material is exposed to a plasma process to form a treated oxide material. A second electrode is formed on the treated oxide material. Additional methods of forming a resistive memory element, as well as related resistive memory elements, resistive memory cells, and resistive memory devices are also described.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D. V. Nirmal Ramaswamy, Sanh D. Tang, Alessandro Torsi, Muralikrishnan Balakrishnan, Xiaonan Chen, John K. Zahurak
  • Publication number: 20130309820
    Abstract: Floating body cell structures including an array of floating body cells disposed on a back gate and source regions and drain regions of the floating body cells spaced apart from the back gate. The floating body cells may each include a volume of semiconductive material having a channel region extending between pillars, which may be separated by a void, such as a U-shaped trench. The floating body cells of the array may be electrically coupled to another gate, which may be disposed on sidewalls of the volume of semiconductive material or within the void therein. Methods of forming the floating body cell devices are also disclosed.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 21, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak, Werner Juengling
  • Publication number: 20130307042
    Abstract: Floating body cell structures including an array of floating body cells disposed on a back gate and source regions and drain regions of the floating body cells spaced apart from the back gate. The floating body cells may each include a volume of semiconductive material having a channel region extending between pillars, which may be separated by a void, such as a U-shaped trench. The floating body cells of the array may be electrically coupled to another gate, which may be disposed on sidewalls of the volume of semiconductive material or within the void therein. Methods of forming the floating body cell devices are also disclosed.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 21, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak, Werner Juengling
  • Publication number: 20130292752
    Abstract: Semiconductor arrays including a plurality of access devices disposed on a buried conductive line and methods for forming the same are provided. The access devices each include a transistor having a source region and drain region spaced apart by a channel region of opposite dopant type and an access line associated with the transistor. The access line may be electrically coupled with one or more of the transistors and may be operably coupled to a voltage source. The access devices may be formed in an array on one or more conductive lines. A system may be formed by integrating the semiconductor devices with one or more memory semiconductor arrays or conventional logic devices, such as a complementary metal-oxide-semiconductor (CMOS) device.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 7, 2013
    Inventors: Sanh D. Tang, John K. Zahurak
  • Publication number: 20130295737
    Abstract: Semiconductor arrays including a plurality of access devices disposed on a buried conductive line and methods for forming the same are provided. The access devices each include a transistor having a source region and drain region spaced apart by a channel region of opposite dopant type and an access line associated with the transistor. The access line may be electrically coupled with one or more of the transistors and may be operably coupled to a voltage source. The access devices may be formed in an array on one or more conductive lines. A system may be formed by integrating the semiconductor devices with one or more memory semiconductor arrays or conventional logic devices, such as a complementary metal-oxide-semiconductor (CMOS) device.
    Type: Application
    Filed: July 2, 2013
    Publication date: November 7, 2013
    Inventors: Sanh D. Tang, John K. Zahurak
  • Patent number: 8546864
    Abstract: Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: October 1, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak
  • Publication number: 20130248800
    Abstract: Non-volatile memory devices comprising a memory string including a plurality of vertically superimposed diodes. Each of the diodes may be arranged at different locations along a length of the electrode and may be spaced apart from adjacent diodes by a dielectric material. The electrode may electrically couple the diodes of the memory strings to one another and to another memory device, such as, a MOSFET device. Methods of forming the non-volatile memory devices as well as intermediate structures are also disclosed.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 26, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak
  • Patent number: 8535992
    Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided reduce a need for manufacturing methods such as deep dopant implants.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: September 17, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak, Michael P. Violette
  • Patent number: 8530295
    Abstract: Floating body cell structures including an array of floating body cells disposed on a back gate and source regions and drain regions of the floating body cells spaced apart from the back gate. The floating body cells may each include a volume of semiconductive material having a channel region extending between pillars, which may be separated by a void, such as a U-shaped trench. The floating body cells of the array may be electrically coupled to another gate, which may be disposed on sidewalls of the volume of semiconductive material or within the void therein. Methods of forming the floating body cell devices are also disclosed.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak, Werner Juengling
  • Patent number: 8513722
    Abstract: Floating body cell structures including an array of floating body cells disposed on a back gate and source regions and drain regions of the floating body cells spaced apart from the back gate. The floating body cells may each include a volume of semiconductive material having a channel region extending between pillars, which may be separated by a void, such as a U-shaped trench. The floating body cells of the array may be electrically coupled to another gate, which may be disposed on sidewalls of the volume of semiconductive material or within the void therein. Methods of forming the floating body cell devices are also disclosed.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak, Werner Juengling
  • Patent number: 8507966
    Abstract: Semiconductor arrays including a plurality of access devices disposed on a buried conductive line and methods for forming the same are provided. The access devices each include a transistor having a source region and drain region spaced apart by a channel region of opposite dopant type and an access line associated with the transistor. The access line may be electrically coupled with one or more of the transistors and may be operably coupled to a voltage source. The access devices may be formed in an array on one or more conductive lines. A system may be formed by integrating the semiconductor devices with one or more memory semiconductor arrays or conventional logic devices, such as a complementary metal-oxide-semiconductor (CMOS) device.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: August 13, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak
  • Patent number: 8501559
    Abstract: Semiconductor arrays including a plurality of access devices disposed on a buried conductive line and methods for forming the same are provided. The access devices each include a transistor having a source region and drain region spaced apart by a channel region of opposite dopant type and an access line associated with the transistor. The access line may be electrically coupled with one or more of the transistors and may be operably coupled to a voltage source. The access devices may be formed in an array on one or more conductive lines. A system may be formed by integrating the semiconductor devices with one or more memory semiconductor arrays or conventional logic devices, such as a complementary metal-oxide-semiconductor (CMOS) device.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: August 6, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak
  • Publication number: 20130193400
    Abstract: Some embodiments include memory cell structures. The structures include a vertical transistor having a bottom source/drain region electrically coupled to a first access/sense line, and having a gate comprised by a second access/sense line. The structures also include programmable material over the vertical transistor and electrically coupled with a top source/drain region of the vertical transistor, with the programmable material having at least two compositionally different regions. The structures also include an electrically conductive material over and directly against the programmable material. Some embodiments include memory arrays.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 1, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej S. Sandhu, John K. Zahurak
  • Patent number: 8461566
    Abstract: Non-volatile memory devices comprising a memory string including a plurality of vertically superimposed diodes. Each of the diodes may be arranged at different locations along a length of the electrode and may be spaced apart from adjacent diodes by a dielectric material. The electrode may electrically couple the diodes of the memory strings to one another and to another memory device, such as, a MOSFET device. Methods of forming the non-volatile memory devices as well as intermediate structures are also disclosed.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: June 11, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak
  • Publication number: 20130126816
    Abstract: Some embodiments include methods of forming memory cells. A series of rails is formed to include bottom electrode contact material. Sacrificial material is patterned into a series of lines that cross the series of rails. A pattern of the series of lines is transferred into the bottom electrode contact material. At least a portion of the sacrificial material is subsequently replaced with top electrode material. Some embodiments include memory arrays that contain a second series of electrically conductive lines crossing a first series of electrically conductive lines. Memory cells are at locations where the electrically conductive lines of the second series overlap the electrically conductive lines of the first series. First and second memory cell materials are within the memory cell locations. The first memory cell material is configured as planar sheets and the second memory cell material is configured as upwardly-opening containers.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sanh D. Tang, Scott E. Sills, John K. Zahurak
  • Publication number: 20130069028
    Abstract: Select devices for memory cell applications and methods of forming the same are described herein. As an example, one or more non-ohmic select devices can include at least two tunnel barrier regions formed between a first metal material and a second metal material, and a third metal material formed between each of the respective at least two tunnel barrier regions. The non-ohmic select device is a two terminal select device that supports bi-directional current flow therethrough.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: David H. Wells, Bhaskar Srinivasan, John K. Zahurak
  • Publication number: 20130026471
    Abstract: A circuit structure includes a substrate having an array region and a peripheral region. The substrate in the array and peripheral regions includes insulator material over first semiconductor material, conductive material over the insulator material, and second semiconductor material over the conductive material. The array region includes vertical circuit devices which include the second semiconductor material. The peripheral region includes horizontal circuit devices which include the second semiconductor material. The horizontal circuit devices in the peripheral region individually have a floating body which includes the second semiconductor material. The conductive material in the peripheral region is under and electrically coupled to the second semiconductor material of the floating bodies. Conductive straps in the array region are under the vertical circuit devices.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Inventors: John K. Zahurak, Sanh D. Tang, Lars P. Heineck, Martin C. Roberts, Wolfgang Mueller, Haitao Liu