Patents by Inventor John L. McCollum

John L. McCollum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170179382
    Abstract: A resistive random access memory device is formed in an integrated circuit between a first metal layer and a second metal layer and includes a first barrier layer disposed over the first metal layer, a tunneling dielectric layer disposed over the first barrier layer, a solid electrolyte layer disposed over the tunneling dielectric layer, an ion source layer disposed over the solid electrolyte layer, and a second barrier layer disposed over the ion source layer.
    Type: Application
    Filed: December 9, 2016
    Publication date: June 22, 2017
    Applicant: Microsemi SoC Corporation
    Inventors: John L. McCollum, Fethi Dhaoui, Frank W. Hawley
  • Publication number: 20170179959
    Abstract: A low-leakage resistive random access memory cell includes a complementary pair of bit lines and a switch node. A first ReRAM device is connected to a first one of the bit lines. A p-channel transistor has a source connected to the ReRAM device, a drain connected to the switch node, and a gate connected to a bias potential. A second ReRAM device is connected to a second one of the bit lines. An n-channel transistor has a source connected to the ReRAM device a drain connected to the switch node, and a gate connected to a bias potential.
    Type: Application
    Filed: December 9, 2016
    Publication date: June 22, 2017
    Applicant: Microsemi SoC Corporation
    Inventors: John L. McCollum, Esmat Z. Hamdy
  • Patent number: 9520448
    Abstract: A push-pull resistive random access memory cell circuit includes an output node, a word line, a first bit line, and a second bit line. A first resistive random access memory device is connected between the first bit line and the output node and a second resistive random access memory device is connected between the output node and the second bit line. A first programming transistor has a gate connected to the word line, a drain connected to the output node, and a source. A second programming transistor has a gate connected to the word line, a drain connected to the source of the first programming transistor, and a source. The first and second programming transistors have the same pitch, the same channel length, and the same gate dielectric thickness, the gate dielectric thickness chosen to withstand programming and erase potentials encountered during operation of the push-pull ReRAM cell circuit.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: December 13, 2016
    Assignee: Microsemi SoC Corporation
    Inventors: John L. McCollum, Fethi Dhaoui
  • Publication number: 20160351626
    Abstract: A push-pull resistive random access memory cell circuit includes an output node, a word line, a first bit line, and a second bit line. A first resistive random access memory device is connected between the first bit line and the output node and a second resistive random access memory device is connected between the output node and the second bit line. A first programming transistor has a gate connected to the word line, a drain connected to the output node, and a source. A second programming transistor has a gate connected to the word line, a drain connected to the source of the first programming transistor, and a source. The first and second programming transistors have the same pitch, the same channel length, and the same gate dielectric thickness, the gate dielectric thickness chosen to withstand programming and erase potentials encountered during operation of the push-pull ReRAM cell circuit.
    Type: Application
    Filed: August 10, 2016
    Publication date: December 1, 2016
    Applicant: Microsemi SoC Corporation
    Inventors: John L. McCollum, Fethi Dhaoui
  • Patent number: 9484904
    Abstract: A gate-boosting transmission gate includes an input node and an output node. An n-channel transistor has a first source/drain terminal connected to the input node and a second source/drain terminal connected to the output node, the n-channel transistor having a low threshold. A p-channel transistor has a first source/drain terminal connected to the input node and a second source/drain terminal connected to the output node, the p-channel transistor having a very low threshold.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: November 1, 2016
    Assignee: MICROSEMI SOC CORPORATION
    Inventor: John L. McCollum
  • Publication number: 20160269031
    Abstract: A push-pull resistive random access memory cell circuit includes an output node, a word line, a first bit line, and a second bit line. A first resistive random access memory device is connected between the first bit line and the output node and a second resistive random access memory device is connected between the output node and the second bit line. A first programming transistor has a gate connected to the word line, a drain connected to the output node, and a source. A second programming transistor has a gate connected to the word line, a drain connected to the source of the first programming transistor, and a source. The first and second programming transistors have the same pitch, the same channel length, and the same gate dielectric thickness, the gate dielectric thickness chosen to withstand programming and erase potentials encountered during operation of the push-pull ReRAM cell circuit.
    Type: Application
    Filed: January 29, 2016
    Publication date: September 15, 2016
    Applicant: Microsemi SoC Corporation
    Inventors: John L. McCollum, Fethi Dhaoui
  • Patent number: 9444464
    Abstract: A push-pull resistive random access memory cell circuit includes an output node, a word line, a first bit line, and a second bit line. A first resistive random access memory device is connected between the first bit line and the output node and a second resistive random access memory device is connected between the output node and the second bit line. A first programming transistor has a gate connected to the word line, a drain connected to the output node, and a source. A second programming transistor has a gate connected to the word line, a drain connected to the source of the first programming transistor, and a source. The first and second programming transistors have the same pitch, the same channel length, and the same gate dielectric thickness, the gate dielectric thickness chosen to withstand programming and erase potentials encountered during operation of the push-pull ReRAM cell circuit.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: September 13, 2016
    Assignee: Microsemi SoC Corporation
    Inventors: John L. McCollum, Fethi Dhaoui
  • Publication number: 20160204223
    Abstract: A method for fabricating a high-voltage transistor on a semiconductor substrate includes defining and forming shallow trench isolation regions for all of the transistors, defining and forming well regions for all of the transistors, forming a gate oxide layer in the well regions for all of the transistor, forming gates for all of the transistors over the gate oxide layer, implanting a dopant to form lightly-doped drain regions for all of the transistors, the lightly-doped drain regions for at least drains of the high-voltage transistors being spaced apart from an inner edge of the shallow trench isolation regions, forming gate spacers at sides of the gates of all of the transistors, and implanting a dopant to form sources and drains for all of the transistors, the drains of the high-voltage transistors being formed completely surrounded by the lightly-doped drain regions of the high-voltage transistors.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Applicant: Microsemi SoC Corporation
    Inventors: Fengliang Xue, Fethi Dhaoui, John L. McCollum
  • Patent number: 9306573
    Abstract: A circuit internal to a programmable integrated circuit for preventing laser interrogation of the programmable integrated circuit includes a sense resistor connected between a deep n-well and a source of bias voltage for the deep n-well. A voltage-sensing circuit is coupled across the sense resistor to measure voltage across the sense resistor. A tamper trigger circuit responsive to the voltage sensing circuit generates a tamper signal in response to a voltage sensed in the voltage sensing circuit having a magnitude greater than a threshold value.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: April 5, 2016
    Assignee: Microsemi SoC Corporation
    Inventor: John L. McCollum
  • Patent number: 9275990
    Abstract: An integrated circuit is formed on a p-type semiconductor substrate connected to ground potential. A deep n-well is disposed in the p-type substrate. A p-well is disposed in the deep n-well. An n+ drain region and an n+ source region are disposed in the p-well, the n+ source region connected to a common potential. A p-type contact is disposed in the p-well and is connected to ground potential through a resistor.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: March 1, 2016
    Assignee: Microsemi SoC Corporation
    Inventors: John L. McCollum, Fethi Dhaoui
  • Publication number: 20160020772
    Abstract: A circuit internal to a programmable integrated circuit for preventing laser interrogation of the programmable integrated circuit includes a sense resistor connected between a deep n-well and a source of bias voltage for the deep n-well. A voltage-sensing circuit is coupled across the sense resistor to measure voltage across the sense resistor. A tamper trigger circuit responsive to the voltage sensing circuit generates a tamper signal in response to a voltage sensed in the voltage sensing circuit having a magnitude greater than a threshold value.
    Type: Application
    Filed: July 2, 2015
    Publication date: January 21, 2016
    Applicant: Microsemi SoC Corporation
    Inventor: John L. McCollum
  • Publication number: 20150365090
    Abstract: A layout arrangement for a resistive random access memory cell includes an active area, a polysilicon row address line over the active region, a metal column address line running orthogonal to the row address line and having an active region contact portion extending over the active region and having a contact to the active region. A metal output line runs parallel to the column address line over the active region. A first cell contact region intersects with the output line and has a contact to the active region. A first metal cell contact region forms an intersection with the first cell contact region. A first resistive random access memory device is formed at the intersection of the first cell contact region and the output line. A second resistive random access memory device is formed at the intersection of the first cell contact region and the first cell contact region.
    Type: Application
    Filed: August 26, 2015
    Publication date: December 17, 2015
    Inventors: Jonathan Greene, Frank Hawley, John L. McCollum
  • Publication number: 20150318853
    Abstract: A gate-boosting transmission gate includes an input node and an output node. An n-channel transistor has a first source/drain terminal connected to the input node and a second source/drain terminal connected to the output node, the n-channel transistor having a low threshold. A p-channel transistor has a first source/drain terminal connected to the input node and a second source/drain terminal connected to the output node, the p-channel transistor having a very low threshold.
    Type: Application
    Filed: May 4, 2015
    Publication date: November 5, 2015
    Applicant: MICROSEMI SOC CORPORATION
    Inventor: John L. McCollum
  • Publication number: 20150318278
    Abstract: An integrated circuit is formed on a p-type semiconductor substrate connected to ground potential. A deep n-well is disposed in the p-type substrate. A p-well is disposed in the deep n-well. An n+ drain region and an n+ source region are disposed in the p-well, the n+ source region connected to a common potential. A p-type contact is disposed in the p-well and is connected to ground potential through a resistor.
    Type: Application
    Filed: May 4, 2015
    Publication date: November 5, 2015
    Applicant: MICROSEMI SOC CORPORATION
    Inventors: John L. McCollum, Fethi Dhaoui
  • Patent number: 7486538
    Abstract: In an integrated circuit, a radiation tolerant static random access memory device comprising a first inverter having an input and an output, a second inverter having an input and an output. A first resistor is coupled between the output of the first inverter and the input of the second inverter. A second resistor is coupled between the output of the second inverter and the input of the first inverter. A first write transistor is coupled to the output of the first inverter and has a gate coupled to a source of a first set of write-control signals and a second write transistor is coupled to the output of the second inverter and has a gate coupled to said source of a second set of write-control signals. Finally, a pass transistor has a gate coupled to the output of on of the first and second inverters.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: February 3, 2009
    Assignee: Actel Corporation
    Inventor: John L. McCollum
  • Publication number: 20080197450
    Abstract: A metal-to-metal antifuse having a lower metal electrode, a lower thin adhesion promoting layer disposed over the lower metal electrode, an amorphous carbon antifuse material layer disposed over the thin adhesion promoting layer, an upper thin adhesion promoting layer disposed over said antifuse material layer, and an upper metal electrode. The thin adhesion promoting layers are about 2 angstroms to 20 angstroms in thickness, and are from a material selected from the group comprising SixCy and SixNy. The ratio of x to y in SixCy is in a range of about 1±0.4, and the ratio of x to y in SixNy is in a range of about 0.75±0.225.
    Type: Application
    Filed: April 15, 2008
    Publication date: August 21, 2008
    Applicants: ACTEL CORPORATION, TEXAS TECH UNIVERSITY SYSTEM
    Inventors: Frank W. Hawley, A. Farid Issaq, John L. McCollum, Shubhra M. Gangopadhyay, Jorge A. Lubguban, Jin Miao Shen
  • Patent number: 7366008
    Abstract: In an integrated circuit, a radiation tolerant static random access memory device comprising a first inverter having an input and an output, a second inverter having an input and an output. A first resistor is coupled between the output of the first inverter and the input of the second inverter. A second resistor is coupled between the output of the second inverter and the input of the first inverter. A first write transistor is coupled to the output of the first inverter and has a gate coupled to a source of a first set of write-control signals and a second write transistor is coupled to the output of the second inverter and has a gate coupled to said source of a second set of write-control signals. Finally, a pass transistor has a gate coupled to the output of on of the first and second inverters.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: April 29, 2008
    Assignee: Actel Corporation
    Inventor: John L. McCollum
  • Patent number: 7358589
    Abstract: A metal-to-metal antifuse having a lower metal electrode, a lower thin adhesion promoting layer disposed over the lower metal electrode, an amorphous carbon antifuse material layer disposed over the thin adhesion promoting layer, an upper thin adhesion promoting layer disposed over said antifuse material layer, and an upper metal electrode. The thin adhesion promoting layers are about 2 angstroms to 20 angstroms in thickness, and are from a material selected from the group comprising SixCy and SixNy. The ratio of x to y in SixCy is in a range of about 1+/?0.4, and the ratio of x to y in SixNy is in a range of about 0.75+/?0.225.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: April 15, 2008
    Assignee: Actel Corporation
    Inventors: Frank W. Hawley, A. Farid Issaq, John L. McCollum, Shubhra M. Gangopadhyay, Jorge A. Lubguban, Jin Miao Shen
  • Patent number: 6965156
    Abstract: A metal-to-metal antifuse having a lower metal electrode, a lower thin adhesion promoting layer disposed over the lower metal electrode, an amorphous carbon antifuse material layer disposed over the thin adhesion promoting layer, an upper thin adhesion promoting layer disposed over said antifuse material layer, and an upper metal electrode. The thin adhesion promoting layers are about 2 angstroms to 20 angstroms in thickness, and are from a material selected from the group comprising SixCy and SixNy. The ratio of x to y in SixCy is in a range of about 1+/?0.4, and the ratio of x to y in SixNy is in a range of about 0.75+/?0.225.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: November 15, 2005
    Assignees: Actel Corporation, Texas Tech University System
    Inventors: Frank W. Hawley, A. Farid Issaq, John L. McCollum, Shubhra M. Gangopadhyay, Jorge A. Lubguban, Jin Miao Shen
  • Publication number: 20030205723
    Abstract: A metal-to-metal antifuse is disposed between two metal interconnect layers in an integrated circuit. An insulating layer is disposed above a lower metal interconnect layer. The insulating layer includes a via formed therethrough containing a tungsten plug in electrical contact with the lower metal interconnect layer. The tungsten plug forms a lower electrode of the antifuse. The upper surface of the tungsten plug is planarized with the upper surface of the insulating layer. In a first embodiment, an antifuse material layer comprising amorphous carbon, amorphous carbon doped with hydrogen or fluorine, or amorphous silicon carbide is disposed above the upper surface of the tungsten plug. A layer of a barrier metal disposed over the antifuse material layer forms an upper electrode of the antifuse. An oxide or tungsten hard mask provides high etch selectivity and the possibility to etch barrier metals without affecting the dielectric constant value and mechanical properties of the antifuse material.
    Type: Application
    Filed: April 1, 2003
    Publication date: November 6, 2003
    Inventors: Frank W. Hawley, John L. McCollum, Jeewika C. Ranaweera