Patents by Inventor John McConnell

John McConnell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180368293
    Abstract: Provided is an electronic module comprising at least one electronic component. A thermoelectric cooler is in thermal contact with the electronic component. A temperature controller is capable of determining a device temperature of the electronic component is provided and capable of providing current to the thermoelectric cooler proportional to a deviation of the device temperature from an optimal temperature range.
    Type: Application
    Filed: May 7, 2018
    Publication date: December 20, 2018
    Inventors: JOHN BULTITUDE, John McConnell
  • Publication number: 20180363498
    Abstract: A turbine shroud assembly is disclosed including an inner shroud, an outer shroud, a shroud dampening pin, and a biasing apparatus. The inner shroud is adjacent to a hot gas path. The outer shroud is adjacent to the inner shroud and distal from the hot gas path, and includes a channel extending from an aperture adjacent to the inner shroud. The shroud dampening pin is within the channel and contacts the inner shroud, and includes a shaft, a contact surface, and a cap. The shaft is within the channel. The contact surface extends through the aperture in contact with the inner shroud. The cap is distal across the shaft from the contact surface. The biasing apparatus contacts the cap, is driven by a pressurized fluid, and provides a biasing force away from the outer shroud along the shroud dampening pin to the inner shroud through the contact surface.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: Glenn Curtis TAXACHER, John McConnell DELVAUX, Matthew Troy HAFNER
  • Publication number: 20180363504
    Abstract: An anti-rotation shroud dampening pin is disclosed including a shaft, an anti-rotation dampening tip at a first end of the shaft, and a cap at a second end of the shaft. The anti-rotation dampening tip includes a pin non-circular cross-section. A turbine shroud assembly is disclosed, including an inner shroud, an outer shroud, the anti-rotation shroud dampening pin, and a biasing apparatus. The inner shroud includes an anti-rotation depression having a depression non-circular cross-section. The outer shroud includes a channel extending from an aperture adjacent to the inner shroud. The anti-rotation shroud dampening pin is disposed within the channel and in contact with the inner shroud, and extends through the aperture into the anti-rotation depression. The biasing apparatus contacts the cap and provides a biasing force to the inner shroud through the anti-rotation dampening tip. The pin non-circular cross-section mates non-rotatably into the depression non-circular cross-section.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: Glenn Curtis TAXACHER, John McConnell DELVAUX, Matthew Troy HAFNER
  • Publication number: 20180363510
    Abstract: A turbine component assembly is disclosed, including a first component, a second component, and a cantilever spring. The first component is arranged to be disposed adjacent to a hot gas path, and includes a ceramic matrix composite composition. The second component is adjacent to the first component and arranged to be disposed distal from the hot gas path across the first component. The cantilever spring is attached directly to the second component as a compliant contact interface between the first component and the second component. The cantilever spring provides a radial spring compliance between the first component and the second component. During operation, the cantilever spring directly contacts and supports the first component.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: Glenn Curtis TAXACHER, John McConnell DELVAUX, Matthew Troy HAFNER
  • Publication number: 20180363483
    Abstract: A turbine component includes an outer shroud arranged within a turbine and further including opposed extending portions. The component further provides an inner shroud shielding the outer shroud from a gas path within the turbine during operation of the turbine and including opposed arcuate portions extending around and in direct contact with a corresponding extending portion of the outer shroud for supporting the inner shroud from the outer shroud. The component further provides a load path forming region at least partially extending between facing surfaces of each arcuate portion and corresponding extending portion. During operation of the turbine, load path forming regions extend into direct contact between at least a portion of the facing surfaces of each arcuate portion and corresponding extending portion, resulting in formation of a loading arrangement having generally evenly distributed radial load forces at the load path forming regions.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: Matthew Troy HAFNER, John McConnell DELVAUX, Glenn Curtis TAXACHER
  • Publication number: 20180363509
    Abstract: A turbine component assembly is disclosed, including a first component, a second component, and a circumferentially oriented flat spring. The first component is arranged to be disposed adjacent to a hot gas path, and includes a ceramic matrix composite composition. The second component is adjacent to the first component and arranged to be disposed distal from the hot gas path across the first component. The circumferentially oriented flat spring is disposed on and directly contacting the second component and directly contacting and supporting the first component as a compliant contact interface between the first component and the second component. The circumferentially oriented flat spring provides a radial spring compliance between the first component and the second component.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: Glenn Curtis TAXACHER, John McConnell DELVAUX, Matthew Troy HAFNER
  • Publication number: 20180340429
    Abstract: A ceramic matrix composite (CMC) turbine blade assembly includes a rotor, a CMC turbine blade, and at least one dovetail sleeve. The rotor has a blade slot with at least one slot surface. The slot surface is at a slot angle. The CMC turbine blade is received in the blade slot. The CMC turbine blade includes a dovetail root having at least one root surface. The root surface is at a root angle. The root angle is at least 5 degrees greater than the slot angle. The dovetail sleeve is received in the blade slot of the rotor. The dovetail sleeve has at least one inner surface contacting at least one root surface and at least one outer surface contacting at least one slot surface to radially retain the CMC turbine blade in the blade slot. A dovetail sleeve and a method of mounting a CMC turbine blade are also disclosed.
    Type: Application
    Filed: May 24, 2017
    Publication date: November 29, 2018
    Inventors: Jacob John KITTLESON, John McConnell DELVAUX
  • Patent number: 10087519
    Abstract: A method of making a preform and preform formed by the method. The method includes providing a first pre-preg ply including at least a first fiber and a first resin. The method also includes providing a second pre-preg ply including at least a second fiber and a second resin over at least a portion of the first pre-preg ply. Heat or electromagnetic radiation is used to at least partially cure the first and second resins to form a cured preform. Heat is applied to pyrolyze at least a portion of the resin of the cured preform to form a pyrolyzed preform. A mechanical stimulus including at least one of controlled drying, local explosions, or ultrasonic energy is applied to the pyrolyzed preform. The mechanically treated pyrolyzed preform is subsequently densified by melt infiltration to form a densified preform.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: October 2, 2018
    Assignee: General Electric Company
    Inventors: Jason Robert Parolini, John McConnell Delvaux, Srikanth Chandrudu Kottilingam, James Joseph Murray, Canan Uslu Hardwicke, Matthew Troy Hafner
  • Publication number: 20180272568
    Abstract: The present disclosure is directed to a method for forming a passage in a composite component. The method includes forming a cavity in a fiber preform. The cavity forms a portion of the passage. The method also includes inserting a core into the cavity and placing one or more fiber plies onto the fiber preform to form a fiber preform assembly. The method further includes thermally processing the fiber preform assembly and densifying the fiber preform assembly to form the composite component. The method also includes removing the core from the composite component.
    Type: Application
    Filed: March 22, 2017
    Publication date: September 27, 2018
    Inventors: Jason Robert Parolini, Matthew Troy Hafner, James Joseph Murray, Srikanth Chandrudu Kottilingam, Canan Uslu Hardwicke, John McConnell Delvaux
  • Publication number: 20180229451
    Abstract: A method of forming a pre-form ceramic matrix composite mold for a ceramic matrix composite (CMC) component including providing pieces of CMC remnant scrap material and randomly arranging the pieces of CMC remnant scrap material relative to one another. The method further includes debulking the pieces of CMC remnant scrap material into a rigidized shape, the rigidized shape having gaps between adjacent pieces of CMC remnant scrap material of about 10 microns and about 10 mm and a gap spacing between about 50 microns and about 50 mm, and forming the rigidized shape into a mold.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 16, 2018
    Inventors: Jason Robert PAROLINI, John McConnell DELVAUX, Canan Uslu HARDWICKE, Glenn Curtis TAXACHER, James Joseph MURRAY
  • Publication number: 20180216469
    Abstract: The present disclosure is directed to a rotor blade for a turbomachine. The rotor blade includes an airfoil having a leading edge, a trailing edge, a root, and a tip. The airfoil defines a chord extending from the leading edge to the trailing edge and a span extending from the root to the tip. A first particle-filled damper is positioned within the airfoil between fifty percent of the chord and one hundred percent of the chord.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 2, 2018
    Inventors: Robert Frank Hoskin, Robert Alan Brittingham, Brian Denver Potter, Daniel Jason Erno, John McConnell Delvaux
  • Publication number: 20180194688
    Abstract: A CMC ply assembly is disclosed including at least one matrix ply interspersed amongst a plurality of CMC plies. Each of the plurality of CMC plies includes a first matrix and a plurality of ceramic fibers. The at least one matrix ply includes a second matrix and is essentially free of ceramic fibers. The plurality of CMC plies and the at least one matrix ply are arranged in an undensified ply stack having an article conformation. A CMC article is disclosed including a plurality of densified CMC plies and at least one densified matrix ply interspersed amongst the plurality of densified CMC plies. A method for forming the CMC article is disclosed including forming, carburizing, infusing a melt infiltration agent into, and densifying the CMC ply assembly. The melt infiltration agent infuses more completely through the at least one matrix ply than through the plurality of CMC plies.
    Type: Application
    Filed: January 9, 2017
    Publication date: July 12, 2018
    Inventors: Matthew Troy HAFNER, John McConnell DELVAUX, Glenn Curtis TAXACHER, Zachary John SNIDER
  • Patent number: 9981438
    Abstract: A pre-form CMC cavity and method of forming pre-form CMC cavity for a ceramic matrix component includes providing a mandrel, applying a base ply to the mandrel, laying-up at least one CMC ply on the base ply, removing the mandrel, and densifying the base ply and the at least one CMC ply. The remaining densified base ply and at least one CMC ply form a ceramic matrix component having a desired geometry and a cavity formed therein. Also provided is a method of forming a CMC component.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: May 29, 2018
    Assignee: General Electric Company
    Inventors: Philip Harold Monaghan, John McConnell Delvaux, Glenn Curtis Taxacher
  • Publication number: 20180099467
    Abstract: A pre-form CMC cavity and method of forming pre-form CMC cavity for a ceramic matrix component includes providing a mandrel, applying a base ply to the mandrel, laying-up at least one CMC ply on the base ply, removing the mandrel, and densifying the base ply and the at least one CMC ply. The remaining densified base ply and at least one CMC ply form a ceramic matrix component having a desired geometry and a cavity formed therein. Also provided is a method of forming a CMC component.
    Type: Application
    Filed: June 9, 2015
    Publication date: April 12, 2018
    Inventors: Philip Harold MONAGHAN, John McConnell DELVAUX, Glenn Curtis TAXACHER
  • Patent number: 9896945
    Abstract: A process of producing a ceramic matrix composite turbine bucket, an insert for a ceramic matrix composite turbine bucket, and a ceramic matrix composite turbine bucket are disclosed. The process includes providing a bucket preform having a dovetail cavity, the dovetail cavity being enclosed within a dovetail shank of the bucket preform, positioning an insert within the dovetail cavity, then forming the ceramic matrix composite turbine bucket in a furnace. The insert includes a geometry configured to be fit within a dovetail cavity of the ceramic matrix composite turbine bucket, a bucket preform, or both. The insert is foam material or a plurality of ceramic matrix composite plies. The ceramic matrix composite turbine bucket includes a dovetail shank and a dovetail cavity enclosed within the dovetail shank. The dovetail cavity is arranged and disposed for receiving an insert.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: Peter de Diego, John McConnell Delvaux, Glenn Curtis Taxacher
  • Publication number: 20170350256
    Abstract: A turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. A plurality of axial cooling channels in the trailing edge portion of the airfoil are arranged to permit axial flow of a cooling fluid from an interior of the turbine component at the trailing edge portion to an exterior of the turbine component at the trailing edge portion. A method of making a turbine component includes forming an airfoil having a trailing edge portion with axial cooling channels. The axial cooling channels are arranged to permit axial flow of a cooling fluid from an interior to an exterior of the turbine component at the trailing edge portion. A method of cooling a turbine component is also disclosed.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 7, 2017
    Inventors: Sandip DUTTA, James ZHANG, Gary Michael ITZEL, John McConnell DELVAUX, Matthew Troy HAFNER
  • Publication number: 20170350259
    Abstract: A turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. A plurality of nested cooling channels in the trailing edge portion of the airfoil permit passage of a cooling fluid from an interior of the turbine component to an exterior of the turbine component at the trailing edge portion. A method of making a turbine component includes forming an airfoil having a leading edge, a trailing edge portion extending to a trailing edge, and a plurality of nested cooling channels in the trailing edge portion. Each nested cooling channel fluidly connects an interior of the turbine component with an exterior of the turbine component at the trailing edge portion. A method of cooling a turbine component is also disclosed.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 7, 2017
    Inventors: Sandip DUTTA, James ZHANG, Gary Michael ITZEL, John McConnell DELVAUX, Matthew Troy HAFNER
  • Publication number: 20170350260
    Abstract: A turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. Radial cooling channels in the trailing edge portion of the airfoil permit radial flow of a cooling fluid through the trailing edge portion. Each radial cooling channel has a first end at a lower surface at a root edge of the trailing edge portion or at an upper surface at a tip edge of the trailing edge portion and a second end opposite the first end at the lower surface or the upper surface. A method of making a turbine component and a method of cooling a turbine component are also disclosed.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 7, 2017
    Inventors: Sandip DUTTA, James ZHANG, Gary Michael ITZEL, John McConnell DELVAUX, Matthew Troy HAFNER
  • Publication number: 20170328203
    Abstract: A turbine assembly includes a rotary component rotatable about an axis of a turbine, a plurality of inner wall segments coupled to the rotary component circumferentially around the rotary component and rotatable with the rotary component, a non-rotary component circumferentially surrounding the rotary component, a plurality of outer wall segments coupled to the non-rotary component and disposed to extend toward the rotary component, and a plurality of nozzles extending from each of the outer wall segments, each nozzle having a tip distal from the outer wall segment such that the tips form a seal with the inner wall segments at an inner flow path of the turbine. An inner wall assembly and a turbine assembly method are also disclosed.
    Type: Application
    Filed: May 10, 2016
    Publication date: November 16, 2017
    Inventors: James ZHANG, James Tyson BALKCUM, III, John McConnell DELVAUX, Matthew Troy HAFNER
  • Publication number: 20170276000
    Abstract: An apparatus is disclosed including a first article, a second article, and a third article disposed adjacent to one another, with the first article and the second article disposed between the third article and a gas path. The first article includes at least one first ceramic matrix composite ply defining a first cooperating feature. The second article includes at least one second ceramic matrix composite ply defining a second cooperating feature. The first cooperating feature and the second cooperating feature define a restricted flow path from the gas path to the third article, which includes a reduced volumetric flow rate of a gas from the gas path to the third article relative to a non-restricted flow path of a non-cooperating interface. A method for forming the apparatus includes forming and aligning the first cooperating feature and the second cooperating feature.
    Type: Application
    Filed: March 24, 2016
    Publication date: September 28, 2017
    Inventors: Zachary John SNIDER, John McConnell DELVAUX, Glenn Curtis TAXACHER