Patents by Inventor John O. Jacobson

John O. Jacobson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030088973
    Abstract: A method and apparatus of assembling and disassembling semiconductor dice to be tested from the components of a temporary test package. A computer-controlled vision system is employed to align the dice with the temporary test package bases, and an automated robot arm system is employed to retrieve and assemble the dice with the various package components. The invention has particular utility in the burn-in and other pre-packaging testing of dice to establish known good dice (KGD).
    Type: Application
    Filed: December 5, 2002
    Publication date: May 15, 2003
    Inventors: Warren M. Farnworth, Alan G. Wood, John O. Jacobson, David R. Hembree, James M. Wark, Jennifer L. Folaron, Robert J. Folaron, Jay C. Nelson, Lelan D. Warren
  • Patent number: 6553276
    Abstract: An inventive method in an integrated circuit (IC) manufacturing process for using data regarding repair procedures conducted on IC's at probe to determine whether any further repairs will be conducted later in the manufacturing process includes storing the data in association with a fuse ID of each of the IC's. The ID codes of the IC's are automatically read, for example, at an opens/shorts test during the manufacturing process. The data stored in association with the ID codes of the IC's is then accessed, and additional repair procedures the IC's may undergo are selected in accordance with the accessed data. Thus, for example, the accessed data may indicate that an IC is unrepairable, so the IC can proceed directly to a scrap bin without having to be queried to determine whether it is repairable, as is necessary in traditional IC manufacturing processes.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: April 22, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Warren M. Farnworth, Derek J. Gochnour, David R. Hembree, Michael E. Hess, John O Jacobson, James M. Wark, Alan G. Wood
  • Patent number: 6551845
    Abstract: A method of using adhesive tape to temporarily retain a die being temporarily held in a fixture during testing and burn-in. The method of the present invention uses a die cut piece of adhesively coated tape to hold a die in a test and burn-in fixture. Upon subsequent heating of the tape beyond the normal operating range of the adhesive coating on the tape, the die is removed from the tape, the tape is removed from the test and burn-in fixture, and the remaining adhesive, if any, is removed from the test and burn-in fixture.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: April 22, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Walter L. Moden, John O. Jacobson
  • Patent number: 6544461
    Abstract: A semiconductor carrier for testing semiconductor components, such as bare dice and chip scale packages, and a method for fabricating the carrier are provided. The carrier includes a molded plastic base, a lead frame, and an interconnect. The interconnect includes contacts for making temporary electrical connections with corresponding contacts (e.g., bond pads, solder balls) on the components. The carrier is fabricated by attaching the interconnect to the lead frame, and then molding the plastic base to the interconnect and lead frame. An alternate embodiment carrier includes a board to which multiple interconnects are molded or laminated. In addition, clip members retain the components on the board in electrical communication with the interconnects. A gasket may be used to protect the interconnect contacts during the molding step.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: April 8, 2003
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Salman Akram, Warren M. Farnworth, Alan G. Wood, Derek Gochnour, John O. Jacobson, James M. Wark, Syed Sajid Ahmad
  • Publication number: 20030057260
    Abstract: A machine and method for bonding puncture-type conductive contact members of an interconnect to the bond pads of a bare semiconductor die includes the use of one or two ultrasonic vibrators mounted to vibrate one or both of the die and interconnect. A short axial linear burst of ultrasonic energy enables the contact members to pierce hard oxide layers on the surfaces of the bond pads at a much lower compressive force and rapidly achieve full penetration depth.
    Type: Application
    Filed: August 5, 2002
    Publication date: March 27, 2003
    Inventors: David R. Hembree, Michael E. Hess, John O. Jacobson, Warren M. Farnworth, Alan G. Wood
  • Patent number: 6538463
    Abstract: A method of using adhesive tape to temporarily retain a die being temporarily held in a fixture during testing and burn-in. The method of the present invention uses a die cut piece of adhesively coated tape to hold a die in a test and burn-in fixture. Upon subsequent heating of the tape beyond the normal operating range of the adhesive coating on the tape, the die is removed from the tape, the tape is removed from the test and burn-in fixture, and the remaining adhesive, if any, is removed from the test and burn-in fixture.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: March 25, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Walter L. Moden, John O. Jacobson
  • Patent number: 6492187
    Abstract: A method and apparatus of assembling and disassembling semiconductor dice to be tested from the components of a temporary test package. A computer-controlled vision system is employed to align the dice with the temporary test package bases, and an automated robot arm system is employed to retrieve and assemble the dice with the various package components. The invention has particular utility in the burn-in and other pre-packaging testing of dice to establish known good dice (KGD).
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: December 10, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Alan G. Wood, John O. Jacobson, David R. Hembree, James M. Wark, Jennifer L. Folaron, Robert J. Folaron, Jay C. Nelson, Lelan D. Warren
  • Publication number: 20020179681
    Abstract: A machine and method for bonding puncture-type conductive contact members of an interconnect to the bond pads of a bare semiconductor die includes the use of one or two ultrasonic vibrators mounted to vibrate one or both of the die and interconnect. A short axial linear burst of ultrasonic energy enables the contact members to pierce hard oxide layers on the surfaces of the bond pads at a much lower compressive force and rapidly achieve full penetration depth.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 5, 2002
    Inventors: David R. Hembree, Michael E. Hess, John O. Jacobson, Warren M. Farnworth, Alan G. Wood
  • Publication number: 20020175422
    Abstract: A method and apparatus for substantially reducing the need for capacitive and inductive compensation for signal lines on a flip-chip semiconductor device. A flip-chip semiconductor device is disclosed having signal lines of substantially equal length. At least one ground plane is also disposed on the flip-chip device and separated from the signal lines by a dielectric layer. By using a ground plane and signal lines having substantially equal lengths, impedance caused by electromagnetic and electrostatic coupling is significantly reduced, and impedance from signal line length is balanced such that the loads on each of the signal lines, as viewed by the semiconductor die, are substantially equal.
    Type: Application
    Filed: July 8, 2002
    Publication date: November 28, 2002
    Inventors: Salman Akram, John O. Jacobson
  • Patent number: 6462423
    Abstract: A method and apparatus for substantially reducing the need for capacitive and inductive compensation for signal lines on a flip-chip semiconductor device. A flip-chip semiconductor device is disclosed having signal lines of substantially equal length. At least one ground plane is also disposed on the flip-chip device and separated from the signal lines by a dielectric layer. By using a ground plane and signal lines having substantially equal lengths, impedance caused by electromagnetic and electromagnetic coupling is significantly reduced, and impedance from signal line length is balanced such that the load on each of the signal lines, as viewed by the semiconductor die, are substantially equal.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: October 8, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, John O. Jacobson
  • Publication number: 20020113320
    Abstract: A method and apparatus for substantially reducing the need for capacitive and inductive compensation for signal lines on a flip-chip semiconductor device. A flip-chip semiconductor device is disclosed having signal lines of substantially equal length. At least one ground plane is also disposed on the flip-chip device and separated from the signal lines by a dielectric layer. By using a ground plane and signal lines having substantially equal lengths, impedance caused by electromagnetic and electrostatic coupling is significantly reduced, and impedance from signal line length is balanced such that the loads on each of the signal lines, as viewed by the semiconductor die, are substantially equal. In another embodiment, the flip-chip device includes both signal bumps extending from the signal lines and ground bumps extending from the ground plane, wherein the ground bumps are arranged adjacent the signal bumps.
    Type: Application
    Filed: October 23, 2001
    Publication date: August 22, 2002
    Inventors: Salman Akram, John O. Jacobson
  • Patent number: 6427899
    Abstract: A machine and method for bonding puncture-type conductive contact members of an interconnect to the bond pads of a bare semiconductor die includes the use of one or two ultrasonic vibrators mounted to vibrate one or both of the die and interconnect. A short axial linear burst of ultrasonic energy enables the contact members to pierce hard oxide layers on the surfaces of the bond pads at a much lower compressive force and rapidly achieve full penetration depth.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: August 6, 2002
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Michael E. Hess, John O. Jacobson, Warren M. Farnworth, Alan G. Wood
  • Patent number: 6419143
    Abstract: A machine and method for bonding puncture-type conductive contact members of an interconnect to the bond pads of a bare semiconductor die includes the use of one or two ultrasonic vibrators mounted to vibrate one or both of the die and interconnect. A short axial linear burst of ultrasonic energy enables the contact members to pierce hard oxide layers on the surfaces of the bond pads at a much lower compressive force and rapidly achieve full penetration depth.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: July 16, 2002
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Michael E. Hess, John O. Jacobson, Warren M. Farnworth, Alan G. Wood
  • Patent number: 6419844
    Abstract: A calibration target for calibrating semiconductor wafer test systems including probe testers and probe card analyzers is provided. Also provided are calibration methods using the calibration target, and a method for fabricating the calibration target. The calibration target includes a substrate with various three dimensional alignment features formed thereon. A first type of alignment feature includes a contrast layer and an alignment fiducial formed on a tip portion thereof. The contrast layer and alignment fiducial are configured for viewing by a viewing device of the probe card analyzer, or the test system, to achieve X-direction and Y-direction calibration. A second type of alignment feature includes a conductive layer formed on a tip portion thereof, which is configured to electrically engage a contact on a check plate of the probe card analyzer, or a probe contact on a probe card of the test system, to achieve Z-direction calibration.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: July 16, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Andrew J. Krivy, Warren M. Farnworth, David R. Hembree, Salman Akram, James M. Wark, John O. Jacobson
  • Patent number: 6420892
    Abstract: A calibration target for calibrating semiconductor wafer test systems including probe testers and probe card analyzers is provided. Also provided are calibration methods using the calibration target, and a method for fabricating the calibration target. The calibration target includes a substrate with various three dimensional alignment features formed thereon. A first type of alignment feature includes a contrast layer and an alignment fiducial formed on a tip portion thereof. The contrast layer and alignment fiducial are configured for viewing by a viewing device of the probe card analyzer, or the test system, to achieve X-direction and Y-direction calibration. A second type of alignment feature includes a conductive layer formed on a tip portion thereof, which is configured to electrically engage a contact on a check plate of the probe card analyzer, or a probe contact on a probe card of the test system, to achieve Z-direction calibration.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: July 16, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Andrew J. Krivy, Warren M. Farnworth, David R. Hembree, Salman Akram, James M. Wark, John O. Jacobson
  • Publication number: 20020082740
    Abstract: An inventive method in an integrated circuit (IC) manufacturing process for using data regarding repair procedures conducted on IC's at probe to determine whether any further repairs will be conducted later in the manufacturing process includes storing the data in association with a fuse ID of each of the IC's. The ID codes of the IC's are automatically read, for example, at an opens/shorts test during the manufacturing process. The data stored in association with the ID codes of the IC's is then accessed, and additional repair procedures the IC's may undergo are selected in accordance with the accessed data. Thus, for example, the accessed data may indicate that an IC is unrepairable, so the IC can proceed directly to a scrap bin without having to be queried to determine whether it is repairable, as is necessary in traditional IC manufacturing processes.
    Type: Application
    Filed: February 5, 2002
    Publication date: June 27, 2002
    Inventors: Salman Akram, Warren M. Farnworth, Derek J. Gochnour, David R. Hembree, Michael E. Hess, John O. Jacobson, James M. Wark, Alan G. Wood
  • Publication number: 20020079919
    Abstract: A method of using adhesive tape to temporarily retain a die being temporarily held in a fixture during testing and burn-in. The method of the present invention uses a die cut piece of adhesively coated tape to hold a die in a test and burn-in fixture. Upon subsequent heating of the tape beyond the normal operating range of the adhesive coating on the tape, the die is removed from the tape, the tape is removed from the test and burn-in fixture, and the remaining adhesive, if any, is removed from the test and burn-in fixture.
    Type: Application
    Filed: February 20, 2002
    Publication date: June 27, 2002
    Inventors: Walter L. Moden, John O. Jacobson
  • Patent number: 6407570
    Abstract: A test carrier and an interconnect for testing semiconductor components, such as bare dice and chip scale packages, are provided. The carrier includes a base on which the interconnect is mounted, and a force applying mechanism for biasing the component against the interconnect. The interconnect includes interconnect contacts configured to make temporary electrical connections with component contacts (e.g., bond pads, solder balls). The interconnect also includes support members configured to physically contact the component, to prevent flexure of the component due to pressure exerted by the force applying mechanism. The support members can be formed integrally with the interconnect using an etching process. In addition, the support members can include an elastomeric layer to provide cushioning and to accommodate Z-direction dimensional variations.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: June 18, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Mike Hess, David R. Hembree, James M. Wark, John O. Jacobson, Salman Akram
  • Patent number: 6396291
    Abstract: A system and method for testing semiconductor components are provided. The system includes: a test board, sockets mounted to the test board in electrical communication with test circuitry, and carriers mounted to the sockets for housing the components. The carriers include bases, and interconnects mounted thereon, having contact members configured to make temporary electrical connections with contacts on the components. In addition, the contact members on the interconnects can be shaped to perform an alignment function, and to prevent excessive deformation of the contacts on the components. The sockets include camming members and electrical connectors configured to electrically contact the carriers with a zero insertion force. During a test procedure, the bases and interconnects can remain mounted to the sockets on the test board, as the components are aligned and placed in electrical contact with the interconnects.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: May 28, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, David R. Hembree, Warren M. Farnworth, Derek Gochnour, Alan G. Wood, John O. Jacobson
  • Patent number: 6380756
    Abstract: A method of using adhesive tape to temporarily retain a die being temporarily held in a fixture during testing and burn-in. The method of the present invention uses a die cut piece of adhesively coated tape to hold a die in a test and burn-in fixture. Upon subsequent heating of the tape beyond the normal operating range of the adhesive coating on the tape, the die is removed from the tape, the tape is removed from the test and burn-in fixture, and the remaining adhesive, if any, is removed from the test and burn-in fixture.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: April 30, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Walter L. Moden, John O. Jacobson