Patents by Inventor John O. Jacobson

John O. Jacobson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6369600
    Abstract: A test carrier and an interconnect for testing semiconductor components, such as bare dice and chip scale packages, are provided. The carrier includes a base on which the interconnect is mounted, and a force applying mechanism for biasing the component against the interconnect. The interconnect includes interconnect contacts configured to make temporary electrical connections with component contacts (e.g., bond pads, solder balls). The interconnect also includes support members configured to physically contact the component, to prevent flexure of the component due to pressure exerted by the force applying mechanism. The support members can be formed integrally with the interconnect using an etching process. In addition, the support members can include an elastomeric layer to provide cushioning and to accommodate Z-direction dimensional variations.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: April 9, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Mike Hess, David R. Hembree, James M. Wark, John O. Jacobson, Salman Akram
  • Patent number: 6363295
    Abstract: An inventive method in an integrated circuit (IC) manufacturing process for using data regarding repair procedures conducted on IC's at probe to determine whether any further repairs will be conducted later in the manufacturing process includes storing the data in association with a fuse ID of each of the IC's. The ID codes of the IC's are automatically read, for example, at an opens/shorts test during the manufacturing process. The data stored in association with the ID codes of the IC's is then accessed, and additional repair procedures the IC's may undergo are selected in accordance with the accessed data. Thus, for example, the accessed data may indicate that an IC is unrepairable, so the IC can proceed directly to a scrap bin without having to be queried to determine whether it is repairable, as is necessary in traditional IC manufacturing processes.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: March 26, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Warren M. Farnworth, Derek J. Gochnour, David R. Hembree, Michael E. Hess, John O. Jacobson, James M. Wark, Alan G. Wood
  • Patent number: 6362637
    Abstract: A method, apparatus and system for testing semiconductor wafers are provided. The method includes providing a wafer carrier to provide an electrical path for receiving and transmitting test signals to the wafer. The wafer carrier includes a base for retaining the wafer, and an interconnect having contact members configured to establish electrical communication with contact locations on the wafer. The wafer carrier can include one or more compressible spring members configured to bias the wafer and interconnect together in the assembled carrier. The wafer carrier can be assembled, with the wafer in alignment with the interconnect, using optical alignment techniques, and an assembly tool similar to aligner bonder tools used for flip chip bonding semiconductor dice. A system for use with the carrier can include a testing apparatus configured to apply test signals through the carrier to the wafer while the wafer is subjected to temperature cycling.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: March 26, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Salman Akram, Alan G. Wood, David R. Hembree, James M. Wark, John O. Jacobson
  • Patent number: 6353312
    Abstract: A method for positioning a semiconductor die within a temporary package, including forming a representation of at least a portion of a semiconductor die, moving the semiconductor die to a location proximate a temporary package, and comparing the representation of the at least a portion of the semiconductor die to a representation of at least a portion of the temporary package. The compared representations are then used to define movement of a die moving assembly, in order to move the die to place the semiconductor die and the temporary package into a desired relationship to one another. A restraining device is then secured to the temporary package to retain the semiconductor die in the desired relationship to the temporary package.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: March 5, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Jennifer L. Folaron, Robert J. Folaron, John O. Jacobson, David R. Hembree, Jay C. Nelson, Lelan D. Warren
  • Patent number: 6353326
    Abstract: A semiconductor carrier for testing semiconductor components, such as bare dice and chip scale packages, and a method for fabricating the carrier are provided. The carrier includes a molded plastic base, a lead frame, and an interconnect. The interconnect includes contacts for making temporary electrical connections with corresponding contacts (e.g., bond pads, solder balls) on the components. The carrier is fabricated by attaching the interconnect to the lead frame, and then molding the plastic base to the interconnect and lead frame. An alternate embodiment carrier includes a board to which multiple interconnects are molded or laminated. In addition, clip members retain the components on the board in electrical communication with the interconnects.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: March 5, 2002
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Salman Akram, Warren M. Farnworth, Alan G. Wood, Derek Gochnour, John O. Jacobson, James M. Wark, Syed Sajid Ahmad
  • Publication number: 20010052785
    Abstract: A test carrier and an interconnect for testing semiconductor components, such as bare dice and chip scale packages, are provided. The carrier includes a base on which the interconnect is mounted, and a force applying mechanism for biasing the component against the interconnect. The interconnect includes interconnect contacts configured to make temporary electrical connections with component contacts (e.g., bond pads, solder balls). The interconnect also includes support members configured to physically contact the component, to prevent flexure of the component due to pressure exerted by the force applying mechanism. The support members can be formed integrally with the interconnect using an etching process. In addition, the support members can include an elastomeric layer to provide cushioning and to accommodate Z-direction dimensional variations.
    Type: Application
    Filed: July 6, 1998
    Publication date: December 20, 2001
    Inventors: WARREN M. FARNWORTH, MIKE HESS, DAVID R. HEMBREE, JAMES M. WARK, JOHN O. JACOBSON, SALMAN AKRAM
  • Publication number: 20010048018
    Abstract: A machine and method for bonding puncture-type conductive contact members of an interconnect to the bond pads of a bare semiconductor die includes the use of one or two ultrasonic vibrators mounted to vibrate one or both of the die and interconnect. A short axial linear burst of ultrasonic energy enables the contact members to pierce hard oxide layers on the surfaces of the bond pads at a much lower compressive force and rapidly achieve full penetration depth.
    Type: Application
    Filed: August 3, 2001
    Publication date: December 6, 2001
    Inventors: David R. Hembree, Michael E. Hess, John O. Jacobson, Warren M. Farnworth, Alan G. Wood
  • Publication number: 20010045446
    Abstract: A machine and method for bonding puncture-type conductive contact members of an interconnect to the bond pads of a bare semiconductor die includes the use of one or two ultrasonic vibrators mounted to vibrate one or both of the die and interconnect. A short axial linear burst of ultrasonic energy enables the contact members to pierce hard oxide layers on the surfaces of the bond pads at a much lower compressive force and rapidly achieve full penetration depth.
    Type: Application
    Filed: August 3, 2001
    Publication date: November 29, 2001
    Inventors: David R. Hembree, Michael E. Hess, John O. Jacobson, Warren M. Farnworth, Alan G. Wood
  • Publication number: 20010043074
    Abstract: A semiconductor carrier for testing semiconductor components, such as bare dice and chip scale packages, and a method for fabricating the carrier are provided. The carrier includes a molded plastic base, a lead frame, and an interconnect. The interconnect includes contacts for making temporary electrical connections with corresponding contacts (e.g., bond pads, solder balls) on the components. The carrier is fabricated by attaching the interconnect to the lead frame, and then molding the plastic base to the interconnect and lead frame. An alternate embodiment carrier includes a board to which multiple interconnects are molded or laminated. In addition, clip members retain the components on the board in electrical communication with the interconnects.
    Type: Application
    Filed: August 28, 1998
    Publication date: November 22, 2001
    Inventors: DAVID R. HEMBREE, SALMAN AKRAM, WARREN M. FARNWORTH, ALAN G. WOOD, DEREK GOCHNOUR, JOHN O. JACOBSON, JAMES M. WARK, SYED SAJID AHMAD
  • Patent number: 6296171
    Abstract: A machine and method for bonding puncture-type conductive contact members of an interconnect to the bond pads of a bare semiconductor die includes the use of one or two ultrasonic vibrators mounted to vibrate one or both of the die and interconnect. A short axial linear burst of ultrasonic energy enables the contact members to pierce hard oxide layers on the surfaces of the bond pads at a much lower compressive force and rapidly achieve full penetration depth.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: October 2, 2001
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Michael E. Hess, John O. Jacobson, Warren M. Farnworth, Alan G. Wood
  • Publication number: 20010011899
    Abstract: A method, apparatus and system for testing semiconductor wafers are provided. The method includes providing a wafer carrier to provide an electrical path for receiving and transmitting test signals to the wafer. The wafer carrier includes a base for retaining the wafer, and an interconnect having contact members configured to establish electrical communication with contact locations on the wafer. The wafer carrier can include one or more compressible spring members configured to bias the wafer and interconnect together in the assembled carrier. The wafer carrier can be assembled, with the wafer in alignment with the interconnect, using optical alignment techniques, and an assembly tool similar to aligner bonder tools used for flip chip bonding semiconductor dice. A system for use with the carrier can include a testing apparatus configured to apply test signals through the carrier to the wafer while the wafer is subjected to temperature cycling.
    Type: Application
    Filed: February 1, 1999
    Publication date: August 9, 2001
    Inventors: WARREN M. FARNWORTH, SALMAN AKRAM, ALAN G. WOOD, DAVID R. HEMBREE, JAMES M. WARK, JOHN O. JACOBSON
  • Patent number: 6247629
    Abstract: A wire bond monitoring system for monitoring wire bonds made on layered packages includes a technique for accessing both the die and the laminate package and making electrical contact thereto so as to test the continuity of the wire bond connection. An electrical connection can be made to a metal trace between the die and the laminate package by contacting a via extending downwardly through the package. Alternatively, a contact may be made from above using a flexible contact. The flexible contact may be attached to the wire bond clamp.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: June 19, 2001
    Assignee: Micron Technology, Inc.
    Inventors: John O. Jacobson, Derek J. Gochnour, Steven G. Thummel
  • Patent number: 6239590
    Abstract: A calibration target for calibrating semiconductor wafer test systems including probe testers and probe card analyzers is provided. Also provided are calibration methods using the calibration target, and a method for fabricating the calibration target. The calibration target includes a substrate with various three dimensional alignment features formed thereon. A first type of alignment feature includes a contrast layer and an alignment fiducial formed on a tip portion thereof. The contrast layer and alignment fiducial are configured for viewing by a viewing device of the probe card analyzer, or the test system, to achieve X-direction and Y-direction calibration. A second type of alignment feature includes a conductive layer formed on a tip portion thereof, which is configured to electrically engage a contact on a check plate of the probe card analyzer, or a probe contact on a probe card of the test system, to achieve Z-direction calibration.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: May 29, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Andrew J. Krivy, Warren M. Farnworth, David R. Hembree, Salman Akram, James M. Wark, John O. Jacobson
  • Patent number: 6210984
    Abstract: A method and apparatus of assembling and disassembling semiconductor dice to be tested from the components of a temporary test package. A computer-controlled vision system is employed to align the dice with the temporary test package bases, and an automated robot arm system is employed to retrieve and assemble the dice with the various package components. The invention has particular utility in the burn-in and other pre-packaging testing of dice to establish known good dice (KGD).
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: April 3, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Alan G. Wood, John O. Jacobson, David R. Hembree, James M. Wark, Jennifer L. Folaron, Robert J. Folaron, Jay C. Nelson, Lelan D. Warren
  • Patent number: 6208578
    Abstract: The partial replacement of partially defective integrated circuit devices, such as memory devices, is disclosed. In one embodiment, the data lines coupled to different sections of the memory array of a memory device have inserted in series therein normally closed links. If a section is found to be defective, then the link for the data line coupled to the section is opened. This permits a repair device to be coupled to the memory device such that only the defective section is replaced. The address and control lines of the repair device are coupled to their counterpart lines of the memory device. However, a data line of the repair device is coupled to a data line of the memory device only if the data line of the memory device is coupled to a defective section.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: March 27, 2001
    Assignee: Micron Technology, Inc.
    Inventor: John O. Jacobson
  • Patent number: 6208157
    Abstract: A system and method for testing semiconductor components are provided. The system includes: a test board, sockets mounted to the test board in electrical communication with test circuitry, and carriers mounted to the sockets for housing the components. The carriers include bases, and interconnects mounted thereon, having contact members configured to make temporary electrical connections with contacts on the components. In addition, the contact members on the interconnects can be shaped to perform an alignment function, and to prevent excessive deformation of the contacts on the components. The sockets include camming members and electrical connectors configured to electrically contact the carriers with a zero insertion force. During a test procedure, the bases and interconnects can remain mounted to the sockets on the test board, as the components are aligned and placed in electrical contact with the interconnects.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: March 27, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, David R. Hembree, Warren M. Farnworth, Derek Gochnour, Alan G. Wood, John O. Jacobson
  • Patent number: 6150828
    Abstract: A method and apparatus of assembling and disassembling semiconductor dice to be tested from the components of a temporary test package. A computer-controlled vision system is employed to align the dice with the temporary test package bases, and an automated robot arm system is employed to retrieve and assemble the dice with the various package components. The invention has particular utility in the burn-in and other pre-packaging testing of dice to establish known good dice (KGD).
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: November 21, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Alan G. Wood, John O. Jacobson, David R. Hembree, James M. Wark, Jennifer L. Folaron, Robert J. Folaron, Jay C. Nelson, Lelan D. Warren
  • Patent number: 6085962
    Abstract: A wire bond monitoring system for monitoring wire bonds made on layered packages includes a technique for accessing both the die and the laminate package and making electrical contact thereto so as to test the continuity of the wire bond connection. An electrical connection can be made to a metal trace between the die and the laminate package by contacting a via extending downwardly through the package. Alternatively, a contact may be made from above using a flexible contact. The flexible contact may be attached to the wire bond clamp.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: July 11, 2000
    Assignee: Micron Technology, Inc.
    Inventors: John O. Jacobson, Derek J. Gochnour, Steven G. Thummel
  • Patent number: 6072326
    Abstract: A system and method for testing semiconductor components are provided. The system includes: a test board, sockets mounted to the test board in electrical communication with test circuitry, and carriers mounted to the sockets for housing the components. The carriers include bases, and interconnects mounted thereon, having contact members configured to make temporary electrical connections with contacts on the components. In addition, the contact members on the interconnects can be shaped to perform an alignment function, and to prevent excessive deformation of the contacts on the components. The sockets include camming members and electrical connectors configured to electrically contact the carriers with a zero insertion force. During a test procedure, the bases and interconnects can remain mounted to the sockets on the test board, as the components are aligned and placed in electrical contact with the interconnects.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: June 6, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, David R. Hembree, Warren M. Farnworth, Derek Gochnour, Alan G. Wood, John O. Jacobson
  • Patent number: 6064221
    Abstract: A method of using adhesive tape to temporarily retain a die being temporarily held in a fixture during testing and burn-in. The method of the present invention uses a die cut piece of adhesively coated tape to hold a die in a test and burn-in fixture. Upon subsequent heating of the tape beyond the normal operating range of the adhesive coating on the tape, the die is removed from the tape, the tape is removed from the test and burn-in fixture, and the remaining adhesive, if any, is removed from the test and burn-in fixture.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: May 16, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Walter L. Moden, John O. Jacobson