Patents by Inventor John S. Foster

John S. Foster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180340882
    Abstract: Described here is a microfabricated particle filtering structure having at least one microchannel formed in a surface of a silicon substrate. The filter structure uses a plurality of barriers formed in at least one microchannel, wherein a distance between the closest barriers is small enough to capture the particulate debris but allow the sample fluid to flow, and a transparent layer that covers the silicon substrate, and the plurality of barriers. The debris captured by the barriers may be analyzable through the transparent layer, helping in determining the source of the debris.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 29, 2018
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Mehran Hoonejani, Kevin SHIELDS
  • Publication number: 20180236449
    Abstract: Described here is a microfabricated particle sorting device that uses a transient pulse of fluidic pressure to deflect the target particle. The transient pulse may be generated by a microfabricated (MEMS) actuator, which pushes a volume of fluid into a channel, or sucks a volume of fluid from the channel. The transient pressure pulse may divert a target particle into a sort channel.
    Type: Application
    Filed: February 18, 2017
    Publication date: August 23, 2018
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Stefan MILTENYI, Kevin Shields, Mehran Hoonejani
  • Patent number: 10006000
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. The target particles may be identified by a marker-free signal such as axial light loss to identify highly pigmented particles.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: June 26, 2018
    Assignee: Owl biomedical, Inc.
    Inventors: Daryl Grummitt, John S. Foster
  • Publication number: 20180154361
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has a sample inlet channel, output channels, and a movable member formed on a substrate. The device may be used to separate a target particle from non-target material in a sample stream. In order to improve the sorter speed, accuracy or yield, the particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the sample inlet channel. The device may be manufactured using three or more substrates in a wafer stack, and each device may be singulated from the wafer stack using submerged trenches in the middle substrate.
    Type: Application
    Filed: January 17, 2018
    Publication date: June 7, 2018
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Kevin E. SHIELDS, Mehran R. Hoonejani, Adam G. Swanson
  • Patent number: 9962702
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has a sample inlet channel, output channels, and a movable member formed on a substrate. The device may be used to separate a target particle from non-target material in a sample stream. In order to improve the sorter speed, accuracy or yield, the particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the sample inlet channel. This focusing element may include cavities of variable cross section along the channel length. In addition, a filtering element may also be included upstream of the focusing element.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: May 8, 2018
    Assignee: Owl biomedical, Inc.
    Inventors: John S. Foster, Kevin Shields, Mehran Hoonejani
  • Publication number: 20180065120
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has a sample inlet channel, output channels, and a movable member formed on a substrate. The device may be used to separate a target particle from non-target material in a sample stream. In order to improve the sorter speed, accuracy or yield, the particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the sample inlet channel. The particle manipulation device may have two separate sort output channels, wherein the sort channel used depends on the characteristics of the sort pulse delivered to the micromechanical particle manipulation device.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 8, 2018
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Kevin SHIELDS, Mehran Hoonejani
  • Patent number: 9863865
    Abstract: A MEMS-based cell sorting system is disclosed, which uses a novel combination of features to accomplish the cell sorting in the microfabricated channels housed in a disposable cartridge. The MEMS-based cell sorting system may include a microfabricated cell sorting valve that is responsive to an applied magnetic field. The MEMS-based cell sorting system may further include an electromagnet that generates a magnetic field to actuate the microfabricated cell sorting valve. The electromagnet may have a design which allows it to create a very localized magnetic field while having adequate thermal properties to operate reliably.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: January 9, 2018
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Nicholas C. Martinez, Daryl W. Grummitt, Ralf-Peter Peters, Christian Peth, Markus Nagel
  • Publication number: 20170327783
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. The target particles may be identified by a marker-free signal such as axial light loss to identify highly pigmented particles.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 16, 2017
    Applicant: Owl biomedical, Inc.
    Inventors: Daryl GRUMMITT, John S. FOSTER
  • Publication number: 20170297025
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has a sample inlet channel, output channels, and a movable member formed on a substrate. The device may be used to separate a target particle from non-target material in a sample stream. In order to improve the sorter speed, accuracy or yield, the particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the sample inlet channel. This focusing element may include cavities of variable cross section along the channel length. In addition, a filtering element may also be included upstream of the focusing element.
    Type: Application
    Filed: June 29, 2017
    Publication date: October 19, 2017
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Kevin SHIELDS, Mehran Hoonejani
  • Patent number: 9604214
    Abstract: A MEMS-based cell sorter is disclosed, which uses a novel combination of features to accomplish the cell sorting using a microfabricated cell sorting valve housed in a disposable cartridge. The features include an interposer that provides fluid communication between the microfluidic passages in the silicon substrate and a plurality of fluid reservoirs in the cartridge, including a sample, sort and waste reservoir The disposable cartridge may include other features that assist in the handling of small volumes of fluids, such as a siphon region in the sort reservoir and funnel-shaped regions in the sample and waste reservoirs. A mixing mechanism may be provided for stirring the contents of the sample reservoir.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: March 28, 2017
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Nicholas C. Martinez, Daryl W. Grummitt, Ralf-Peter Peters, Christian Peth, Markus Nagel
  • Publication number: 20160377525
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and optical confirmation of the manipulation. The optical confirmation may be camera-based, and may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, fluid valve, which sorts a target particle from non-target particles in a fluid stream. The optical confirmation stage is disposed in the microfabricated fluid channels at the input and output of the microfabricated sorting valve. The laser interrogation regions may be used to assess the effectiveness or accuracy of the sorting, and to control or adjust sort parameters during the sorting process.
    Type: Application
    Filed: August 22, 2016
    Publication date: December 29, 2016
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Kevin E. Shields, Mehran R. Hoonejani, Mark A. NAIVAR, Yareeve ZEMEL
  • Patent number: 9453787
    Abstract: A particle separation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate to sort one or more target particle from a sample stream. The system may include an interposer that receives the sorted particle and dispenses a carrier fluid with it to form a liquid droplet containing the particle. The droplet may then be dispensed to a microtiter plate, such that each well in the titer plate may contain a single target particle. The system may be used to separate individual biological cells, such as T cells, B cells, stem cells, cancer cells and sperm cells for further manipulation.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: September 27, 2016
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Nicholas C. Martinez
  • Patent number: 9446435
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and a plurality of laser interrogation regions. The laser interrogation regions may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, flap-type fluid valve, which sorts a target particle from non-target particles in a fluid stream. The laser interrogation stages are disposed in the microfabricated fluid channels at the input and output of the flap-type sorting valve. The laser interrogation regions may be used to assess the effectiveness or accuracy of the sorting, and to control or adjust sort parameters during the sorting process.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: September 20, 2016
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Daryl W. Grummitt
  • Publication number: 20160263575
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. The target particle may be, for example, a stem cell, zygote, a cancer cell, a T-cell, a component of blood, bacteria or DNA sample, for example. The particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the inlet channel.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Stefan MILTENYI, Kamala R. Qalandar, Kevin E. Shields, Kimberly L. Turner, Mehran R. Hoonejani
  • Patent number: 9404838
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. The target particle may be, for example, a stem cell, zygote, a cancer cell, a T-cell, a component of blood, bacteria or DNA sample, for example. The particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the inlet channel.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: August 2, 2016
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Nicholas C. Martinez, Stefan Miltenyi, Kamala R. Qalandar, Kevin E. Shields, Kimberly L. Turner, Mehran R. Hoonejani
  • Patent number: 9372144
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. The target particle may be, for example, a stem cell, zygote, a cancer cell, a T-cell, a component of blood, bacteria or DNA sample, for example. The particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the inlet channel.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: June 21, 2016
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Nicholas C. Martinez, Stefan Miltenyi, Kamala R. Qalandar, Kevin E. Shields, Kimberly L. Turner
  • Patent number: 9372185
    Abstract: A MEMS-based system and a method are described for separating a target particle from the remainder of a fluid stream. The system makes use of a unique, microfabricated movable structure formed on a substrate, which moves in a rotary fashion about one or more fixed points, which are all located on one side of the axis of motion. The movable structure is actuated by a separate force-generating apparatus, which is entirely separate from the movable structure formed on its substrate. This allows the movable structure to be entirely submerged in the sample fluid.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: June 21, 2016
    Assignees: Owl Biomedical, Inc., Innovative Micro Technology
    Inventors: John S Foster, Daryl W. Grummitt, Jaquelin K. Spong, Kimberley L. Turner, John C. Harley
  • Patent number: 9360164
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and a sensor to detect when the sample volume is exhausted or nearly exhausted. The sensor sends a signal to a fluid control means that reverses the pressure between one of the output channels and the input channels, to keep the surfaces wet with a volume of the sample fluid. This volume can be maintained in the channel until an operator intervenes, or it can be repeatedly shuttled back and forth between the input channel and an output channel. By keeping the channels wet, material from the sample stream does not become adhered to the channel walls, which might otherwise irreversibly change or damage the device.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: June 7, 2016
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Nicholas C. Martinez, Kevin E. Shields, Jaquelin K. Spong
  • Publication number: 20160082480
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and a plurality of laser interrogation regions. The laser interrogation regions may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, flap-type fluid valve, which sorts a target particle from non-target particles in a fluid stream. The laser interrogation stages are disposed in the microfabricated fluid channels at the input and output of the flap-type sorting valve. The laser interrogation regions may be used to assess the effectiveness or accuracy of the sorting, and to control or adjust sort parameters during the sorting process.
    Type: Application
    Filed: November 20, 2015
    Publication date: March 24, 2016
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Daryl W. GRUMMITT
  • Publication number: 20150367346
    Abstract: A MEMS-based cell sorter is disclosed, which uses a novel combination of features to accomplish the cell sorting using a microfabricated cell sorting valve housed in a disposable cartridge. The features include an interposer that provides fluid communication between the microfluidic passages in the silicon substrate and a plurality of fluid reservoirs in the cartridge, including a sample, sort and waste reservoir The disposable cartridge may include other features that assist in the handling of small volumes of fluids, such as a siphon region in the sort reservoir and funnel-shaped regions in the sample and waste reservoirs. A mixing mechanism may be provided for stirring the contents of the sample reservoir.
    Type: Application
    Filed: March 4, 2015
    Publication date: December 24, 2015
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Nicholas C. Martinez, Daryl Grummitt, Ralf-Peter Peters, Christian Peth, Markus Nagel