Patents by Inventor John Smythe

John Smythe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070290293
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a silicon nitride barrier is deposited into the trench. The silicon nitride layer has a high nitrogen content near the trench walls to protect the walls. The silicon nitride layer further from the trench walls has a low nitrogen content and a high silicon content, to allow improved adhesion. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator. The resulting trench has a well-adhered insulator which helps the insulating properties of the trench.
    Type: Application
    Filed: August 28, 2007
    Publication date: December 20, 2007
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jigish Trivedi, Robert Patraw, Kevin Beaman, John Smythe
  • Publication number: 20070287300
    Abstract: Disclosed is a method of forming a layer of material using an atomic layer deposition (ALD) process in a process chamber of a process tool. In one illustrative embodiment, the method includes identifying a target characteristic for the layer of material, determining a precursor pulse time for introducing a precursor gas into the process chamber during the ALD process to produce the target characteristic in the layer of material, and performing the ALD process that comprises a plurality of steps wherein the precursor gas is introduced into the chamber for the determined precursor pulse time to thereby form the layer of material.
    Type: Application
    Filed: June 9, 2006
    Publication date: December 13, 2007
    Inventors: NEAL RUEGER, John Smythe
  • Patent number: 7273796
    Abstract: A method of fabricating integrated circuitry includes depositing a spin-on-dielectric over a semiconductor substrate. The spin-on-dielectric comprises a polysilazane. Only some of the polysilazane is etched from the semiconductor substrate. Such etching comprises exposure to an etching fluid comprising at least one of a) an aqueous fluid having a pH greater than 7.0, or b) a basic fluid solution. After the etching, remaining spin-on-dielectric comprising polysilazane is annealed effective to form an annealed dielectric which is different in composition from the spin-on-dielectric, and preferably having a dielectric constant k which is different from that of the initially deposited spin-on-dielectric.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: September 25, 2007
    Assignee: Micron Technology, Inc.
    Inventors: John Smythe, Li Li, Janos Fucsko
  • Patent number: 7271464
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a silicon nitride barrier is deposited into the trench. The silicon nitride layer has a high nitrogen content near the trench walls to protect the walls. The silicon nitride layer further from the trench walls has a low nitrogen content and a high silicon content, to allow improved adhesion. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator. The resulting trench has a well-adhered insulator which helps the insulating properties of the trench.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Jigish D. Trivedi, Robert D. Patraw, Kevin L. Beaman, John A. Smythe, III
  • Patent number: 7271463
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a liner layer preferably is deposited into the trench. An anisotropic plasma process is then performed on the trench. A silicon layer may be deposited on the base of the trench during the plasma process, or the plasma can treat the liner layer. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator, and oxidizing the silicon rich layer on the base of the trench. The resulting trench has a consistent etch rate from top to bottom of the trench.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, III, William Budge
  • Publication number: 20070210366
    Abstract: Embodiments of the disclosure include a shallow trench isolation structure having a dielectric material with energetic species implanted to a predetermined depth of the dielectric material. Embodiments further include methods of fabricating the trench structures with the implant of energetic species to the predetermined depth. In various embodiments the implant of energetic species is used to densify the dielectric material to provide a uniform wet etch rate across the surface of the dielectric material. Embodiments also include memory devices, integrated circuits, and electronic systems that include shallow trench isolation structures having the dielectric material with the high flux of energetic species implanted to the predetermined depth of the dielectric material.
    Type: Application
    Filed: March 7, 2006
    Publication date: September 13, 2007
    Inventors: Gurtej Sandhu, John Smythe
  • Patent number: 7262135
    Abstract: The invention includes methods of forming layers conformally over undulating surface topographies associated with semiconductor substrates. The undulating surface topographies can first be exposed to one or more of titanium oxide, neodymium oxide, yttrium oxide, zirconium oxide and vanadium oxide to treat the surfaces, and can be subsequently exposed to a material that forms a layer conformally along the treated surfaces. The material can, for example, comprise an aluminum-containing compound and one or both of silane and silazane. The invention also includes semiconductor constructions having conformal layers formed over liners containing one or more of titanium oxide, yttrium oxide, zirconium oxide and vanadium oxide.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: August 28, 2007
    Assignee: Micron Technology, Inc.
    Inventor: John Smythe
  • Publication number: 20070111470
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a liner layer preferably is deposited into the trench. An anisotropic plasma process is then performed on the trench. A silicon layer may be deposited on the base of the trench during the plasma process, or the plasma can treat the liner layer. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator, and oxidizing the silicon rich layer on the base of the trench. The resulting trench has a consistent etch rate from top to bottom of the trench.
    Type: Application
    Filed: January 11, 2007
    Publication date: May 17, 2007
    Applicant: MICRON TECHNOLGY, INC.
    Inventors: John Smythe, William Budge
  • Publication number: 20070059899
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, an oxygen barrier is deposited into the trench. An expandable, oxidizable liner, preferably amorphous silicon, is then deposited. The trench is then filled with a spin-on dielectric (SOD) material. A densification process is then applied, whereby the SOD material contracts and the oxidizable liner expands. Preferably, the temperature is ramped up while oxidizing during at least part of the densification process. The resulting trench has a negligible vertical wet etch rate gradient and a negligible recess at the top of the trench.
    Type: Application
    Filed: November 6, 2006
    Publication date: March 15, 2007
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: John Smythe, Jigish Trivedi
  • Publication number: 20070049004
    Abstract: The invention includes methods of forming layers conformally over undulating surface topographies associated with semiconductor substrates. The undulating surface topographies can first be exposed to one or more of titanium oxide, neodymium oxide, yttrium oxide, zirconium oxide and vanadium oxide to treat the surfaces, and can be subsequently exposed to a material that forms a layer conformally along the treated surfaces. The material can, for example, comprise one or both of aluminum silane and aluminum silazane. The invention also includes semiconductor constructions having conformal layers formed over liners containing one or more of titanium oxide, yttrium oxide, zirconium oxide and vanadium oxide.
    Type: Application
    Filed: October 31, 2006
    Publication date: March 1, 2007
    Inventor: John Smythe
  • Publication number: 20070049003
    Abstract: The invention includes methods of forming layers conformally over undulating surface topographies associated with semiconductor substrates. The undulating surface topographies can first be exposed to one or more of titanium oxide, neodymium oxide, yttrium oxide, zirconium oxide and vanadium oxide to treat the surfaces, and can be subsequently exposed to a material that forms a layer conformally along the treated surfaces. The material can, for example, comprise one or both of aluminum silane and aluminum silazane. The invention also includes semiconductor constructions having conformal layers formed over liners containing one or more of titanium oxide, yttrium oxide, zirconium oxide and vanadium oxide.
    Type: Application
    Filed: September 1, 2005
    Publication date: March 1, 2007
    Inventor: John Smythe
  • Publication number: 20070004131
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a silicon nitride barrier is deposited into the trench. The silicon nitride layer has a high nitrogen content near the trench walls to protect the walls. The silicon nitride layer further from the trench walls has a low nitrogen content and a high silicon content, to allow improved adhesion. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator. The resulting trench has a well-adhered insulator which helps the insulating properties of the trench.
    Type: Application
    Filed: September 5, 2006
    Publication date: January 4, 2007
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jigish Trivedi, Robert Patraw, Kevin Beaman, John Smythe
  • Publication number: 20060267131
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, an oxygen barrier is deposited into the trench. An expandable, oxidizable liner, preferably amorphous silicon, is then deposited. The trench is then filled with a spin-on dielectric (SOD) material. A densification process is then applied, whereby the SOD material contracts and the oxidizable liner expands. Preferably, the temperature is ramped up while oxidizing during at least part of the densification process. The resulting trench has a negligible vertical wet etch rate gradient and a negligible recess at the top of the trench.
    Type: Application
    Filed: August 1, 2006
    Publication date: November 30, 2006
    Inventors: John Smythe, Jigish Trivedi
  • Publication number: 20060265868
    Abstract: An inter-metal dielectric (IMD) fill process includes depositing an insulating nanolaminate barrier layer. The nanolaminate is preferably an oxide liner formed by using an alternating layer deposition process. The layer is highly conformal and is an excellent diffusion barrier. Gaps between metal lines are filled using high density plasma chemical vapor deposition with a reactive species gas. The barrier layer protects the metal lines from shorts between neighboring layers. The resulting structure has substantially uneroded metal lines and an insulating IMD fill.
    Type: Application
    Filed: July 14, 2006
    Publication date: November 30, 2006
    Inventors: Neal Rueger, Chris Hill, Zailong Bian, John Smythe
  • Publication number: 20060246719
    Abstract: An inter-metal dielectric (IMD) fill process includes depositing an insulating nanolaminate barrier layer. The nanolaminate is preferably an oxide liner formed by using an alternating layer deposition process. The layer is highly conformal and is an excellent diffusion barrier. Gaps between metal lines are filled using high density plasma chemical vapor deposition with a reactive species gas. The barrier layer protects the metal lines from shorts between neighboring layers. The resulting structure has substantially uneroded metal lines and an insulating IMD fill.
    Type: Application
    Filed: July 14, 2006
    Publication date: November 2, 2006
    Applicant: MICRON TECHNOLOGY, INC
    Inventors: Neal Rueger, Chris Hill, Zailong Bian, John Smythe
  • Publication number: 20060216906
    Abstract: A method of fabricating integrated circuitry includes depositing a spin-on-dielectric over a semiconductor substrate. The spin-on-dielectric comprises a polysilazane. Only some of the polysilazane is etched from the semiconductor substrate. Such etching comprises exposure to an etching fluid comprising at least one of a) an aqueous fluid having a pH greater than 7.0, or b) a basic fluid solution. After the etching, remaining spin-on-dielectric comprising polysilazane is annealed effective to form an annealed dielectric which is different in composition from the spin-on-dielectric, and preferably having a dielectric constant k which is different from that of the initially deposited spin-on-dielectric.
    Type: Application
    Filed: March 23, 2005
    Publication date: September 28, 2006
    Inventors: John Smythe, Li Li, Janos Fucsko
  • Patent number: 7112513
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, an oxygen barrier is deposited into the trench. An expandable, oxidizable liner, preferably amorphous silicon, is then deposited. The trench is then filled with a spin-on dielectric (SOD) material. A densification process is then applied, whereby the SOD material contracts and the oxidizable liner expands. Preferably, the temperature is ramped up while oxidizing during at least part of the densification process. The resulting trench has a negligible vertical wet etch rate gradient and a negligible recess at the top of the trench.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: September 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, III, Jigish D. Trivedi
  • Publication number: 20060125043
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a liner layer preferably is deposited into the trench. An anisotropic plasma process is then performed on the trench. A silicon layer may be deposited on the base of the trench during the plasma process, or the plasma can treat the liner layer. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator, and oxidizing the silicon rich layer on the base of the trench. The resulting trench has a consistent etch rate from top to bottom of the trench.
    Type: Application
    Filed: December 10, 2004
    Publication date: June 15, 2006
    Inventors: John Smythe, William Budge
  • Publication number: 20060102977
    Abstract: Semiconductor devices, structures and systems that utilize a polysilazane-based silicon oxide layer or fill, and methods of making the oxide layer are disclosed. In one embodiment, a polysilazane solution is deposited on a substrate and processed with ozone in a wet oxidation at low temperature to chemically modify the polysilazane material to a silicon oxide layer.
    Type: Application
    Filed: December 29, 2005
    Publication date: May 18, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Janos Fucsko, John Smythe, Li Li, Grady Waldo
  • Publication number: 20060043521
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a silicon nitride barrier is deposited into the trench. The silicon nitride layer has a high nitrogen content near the trench walls to protect the walls. The silicon nitride layer further from the trench walls has a low nitrogen content and a high silicon content, to allow improved adhesion. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator. The resulting trench has a well-adhered insulator which helps the insulating properties of the trench.
    Type: Application
    Filed: August 24, 2004
    Publication date: March 2, 2006
    Inventors: Jigish Trivedi, Robert Patraw, Kevin Beaman, John Smythe